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A group & of Jocal weights is constructed for the square, honeycomb, and triangular lattices which
counts for any closed path in the lattice 1/2« times the change in the argument of the fangent vector
(mod 2) and the number of enclosed units of area (mod 2). These weights are used to evaluate the
partition function of the two-dimensional Ising model with nearest-neighbor interaction and with a
particular, imaginary external magnetic field. For the square lattice, the method gives a result an-

nounced by Lee and Yang.

INTRODUCTION

N their discussion of the two-dimensional Ising
model for the square lattice, Kac and Ward'
introduced weight factors which proved useful in
evaluating the number of closed graphs in the lattice
via the evaluation of a large-order determinant. They
were able to rederive Onsager's expression® for the
partition function in the case of nearest-neighbor
interaction and zero external magnetic field. Later,
Feynman® conjectured an identity, valid for a large
class of planar graphs, giving the number of closed
subgraphs as an exponent of a sum over weighted
paths in the graph. Recently, Sherman®® gave a
rigorous proof of this conjecture.

An important feature of both methods is that the
weight assigned to any path depends only on the
“local” behavior of the path. That is, a path is
given as a sequence of vertices with connecting
straight-line edges and a weight is assigned to each
vertex depending on the angle formed by the two
corresponding edges. The “past’” or the “future”
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of the path play no role in the assignment at the
given vertex. The weight of the whole path is simply
the product of the weights assigned to the vertices
in the path. Thus, “global” properties are determined
by “local” properties, and an explicit evaluation is
quite often possible (by the method of inching along!).
In the case of the square lattice in the plane, the
weight assigned to a “closed” path is (—1)*®, where
27n(p) is the change in the argument of the tangent
vector in one traversal of the path p.

We are interested here in another global property
which can be determined by local weights. We lose
immediately the generality of Feynman’s eonjecture
and must restrict our considerations to three regular
lattices in the plane, i.e., square, honeycomb, and
triangular. However, for the three lattices just men-
tioned, we will derive a system of weights which
for any closed path will give us, in addition to 1/2x
times the change in the argument of the tangent
vector (mod 2), the number of enclosed “units” of
area (mod 2). Using these weights, one ean rederive
a result of Lee and Yang® for the square lattice
giving the free energy per spin at z = —1 (external
magnetic field equal to 7k7x/2u), and one can de-
rive similar results for the honeycomb and triangular
lattices.

¢ T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
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DISCUSSION OF WEIGHTS

For the moment, we restrict our discussion to the
square lattice in the plane, even though it is clear
that the argument will apply with equal validity
to the other lattices. Let the lattice points be (m, n)
where m and n are integers, and let the edges be
the unit long segments connecting any two nearest
points in a horizontal or vertical direction. To each
edge we can assign a direction in two ways. By a
path we mean a well-defined sequence of directed
edges, where any two successive edges touch (ter-
minal to initial) and where no two successive edges
are the same. By a closed path we mean a path such
that the last edge touches the first edge (terminal
to initial). The local behavior of a closed path at
a point is illustrated in Fig. 1. Kac and Ward
assigned weights & = exp (%im), 1, & = exp (—iin),
respectively, to the configurations (i), (i), (iii) of
Fig. 1. The weight assigned a closed path is 1 or —1.
Clearly, the weights are elements from a cyelic group
of order 8 generated by a.

If one is interested in assigning local weights, say
&, B, «, to the configurations in (1), (i), and (iii),
respectively, in Fig. 1, in such a way that a closed
path has a weight from which one can determine
“twist’’ of the tangent vector (mod 2) and enclosed
number of squares (mod 2), then four weights are
required for describing closed paths. Moreover, the
square of all of these four weights must be the same,
since traversing any closed path twice around yields
a weight which is the square of that assigned to
the original closed path, while traversing any closed
path twice around doubles both the twist of the
tangent vector and the number of enclosed squares.
Thus, we are dealing with the four-group 8 = {q, b}
with ¢* = b* = I, ab = ba. We will require the
following interpretation for closed paths which have
the weight indicated.

I: even twist of tangent vector and even
number of enclosed squares.

a: odd twist of tangent vector and even
number of enclosed squares.

b: even twist of tangent vector and odd
number of enclosed squares.

ab: odd twist of tangent vector and odd
number of enclosed squares.

1

(i) (ii) (iit)

1)

Fig. 1. The three types of
local behavior of a path at a
vertex in the square lattice.
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In general, the weights o, 8, & will be elements
of a noncommutative group &. Care must be exer-
cised in assigning weights to a path. We will abide
by the following rule.

Rule 1. If a path (directed!) has edges ¢, -~ , e,
and successive vertices vy, -+ - , v,, and if a, is the
weight assigned to the path configuration at v, then
the weight assigned to the path itself will be w =

oyttt Q.

A closed path may be described in many ways
as a sequence of edges, each description being de-
termined by the selection of a particular edge as
the “start.”” In any case, the weight assigned must
be invariant under the obvious cyclic permutation
of the a;’s. This means that the four-group 8 = {a, b}
must lie in the center of the weight group &. We
state this as a second rule.

Rule 2. The four-group B must be a subgroup
of the center of the group & generated by the local
weights,

In the next few sections, we will construct the
weight groups, according to the stated rules, for
the square, honeycomb and triangular lattices, so
that weights assigned to closed paths have the
interpretation (1).

THE SQUARE LATTICE

The square lattice was described in the previous
section. We let the local weights, if any exist, be «
for a right turn, 8 for a move straight ahead, and
& for a left turn. These weights are to be independent
of position in the lattice and of the orientation.

Let us first derive some necessary conditions for
o, & B. In Fig. 2, we have shown schematically
two closed paths, one of which contains one more
enclosed square than does the other. Both paths
have the same twist of the tangent vector. Thus,
the weight assigned to path 2 is b times that assigned
to path 1. Since the weights are to form a group,
we can cancel out the weight assigned to that part
of the closed path lying between u, and u,, and we
deduce that bo® = Ba’8. Actually, there are several
relations of this type which can be deduced in a

. .
Fig. 2. Two closed
paths which differ only by
1) U u y, Inclusion or noninclusion
0 ! ° ' of sides from a particular
square.

11 \ ( \

{ | \ /l

\ ,I N /



WEIGHT FACTORS FOR THE TWO-DIMENSIONAL ISING MODEL

Fia. 3. The numbers indicate
seven possible positions for the
directec}) edge of the closed path as
the path leaves the central square.

similar manner. In Fig. 3, we have indicated seven
possible positions for the vector u,, each of which
leads to a condition. Adding the obvious condition

o' = & = ab to these, we can list eight basic
relations:

1) ba® = pa’f, (5) bad’a = §,

(2) baB = Ba’a, (6) bad’8 = Ba&,

(3) bada = Baf, (7) bad’a = &,

(4) badB = Bag, @8 o = ab.

It is amusing to note that the weight group ®
(if it exists) must be noncommutative. For, if 8
commuted with « and &, (4) would imply that b = I,
a contradiction. A bit of guess work is needed here
to achieve a simplification, the guess being that
8% = I. One can then derive from (1)~(8)

W g =1,
(ii) 4’ = b,
(iii) a¢ = de,
@iv) BaBa = I,

(v) o = ¢* = ab.

For example, (ii) follows from (5), (iii) subsequently
follows from (7), and in turn (iv) follows from (3)
and (ii). It is not difficult to see that the converse
is also true, i.e., (i)—(v) imply (1)-(8).

Relations (i)—(v) define a group ®, of order 64,
with center B = {a, b}. This group will now be
shown to be the desired weight group. To accomplish
this end, we must first check the weights assigned
to two more pairs of related paths, as pictured in
Fig. 4. It is left to the reader to verify that for the
first pair the assigned weights differ by a factor
of ab, while for the second pair the assigned weights
differ by a factor of a. Now, any closed path can be
thought of as being formed step by step (in a non-
unique manner) through the addition of some or
all of the edges of a single square, starting of course
with a closed path surrounding a single square. The
considerations above have shown us that the addi-
tion of edges from a single square (with, in general,
the removal of others) alters the weight in exactly
the appropriate manner so that the interpretation
(1) remains valid for the new path if it was valid
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(i)

! / \
4 } (ii) \ )

F1e. 4. Two pairs of related closed paths differing only in
their motion around the central square.

for the old one. The fact that ® is the desired
weight group follows by induction.

THE HONEYCOMB LATTICE

The method of the last section can be applied
with equal success to find the weight group &
associated with the honeycomb lattice (see Fig. 5).
At any vertex there are two possible motions, a
right turn and a left turn, to which we assign the
weights o and B, respectively. In Fig. 5, we have
shown five possible positions for a vector u, directed
away from the central hexagon. For each position
of u,, two different paths conneeting u, and u, can
be drawn using only sides from the central hexagon
and such that the two paths use different sides.
In each case the weights assigned to the two different
paths must disagree by a factor of b. Adding the
obvious condition «® = 8° = ab, we get six basic
relations:

(1) baz = 5a4ﬁy (4) baﬂ3a = ﬁaﬁy
(2) baBa = BB, (5) bag'a = £,
(3) baf’a = Ba°B, 6) o = ab.

Fia. 5. The numbers
indicate five possible
positions for the di-
rected edge of the
closed path as the path
leaves the central hex-
agon,
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Fi1e. 6. A pair of related closed paths differing only in the
direction of their motion around the central hexagon.

A simplification is achieved by adding the condition
o® = B7°. This added condition implies, for example,
that (1) and (4) are equivalent and (2) and (5)
are equivalent. Our simplified conditions become

@) o =6
(i) o® = 8° = ab,
(iii) afef = b.

Note that (iii) follows immediately from (1) or (2).
Relations (1)-(6) are implied by (i)-(iii). For ex-
ample, to show (3) we deduce from (iii) that

aBS — bﬁ2a262 (ba2)2 — aﬁ(ﬁaﬁ)z.
Thus,

and o =

baeﬂzazﬁz — aﬁﬁaﬂzaﬁ,

and (3) follows.

Relations (i)—(iii) define a group ©, of order 96,
with center {o®, b} D B = {a, b}. This is the
desired weight group, as can be proved by the same
method outlined in the last section. It is left to
the reader to verify that the appropriate relation-
ship exists between the weights assigned to the two
paths pictured in Fig. 6.

THE TRIANGULAR LATTICE

At any vertex of a triangular lattice there are
five possible motions. We assign weight 8 to a step
straight ahead, weight o (or @) to a turn to the
right (or left) through 60°, and weight v (or %)
to a turn to the right (or left) through 120°. As is
indicated in Fig. 7, we would expect to start the
analysis with 12 basic relations. We shall not do
this, for one is very fortunate here to be in one

Fic. 7. The numbers indicate
eleven possible positions for the
directed edge of a closed path as
the path leaves the central triangle.
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of those rare and lovely situations in mathematics
where for no apparent reason a gross simplification
is possible. The weight group ® can be taken to
be the commutative group, of order 24, generated

by «® = @ and b. In terms of a and b, the local
weights are

a = a, @ =a’, 8 =b.

v = ba®, 4 = ba"?,

Using the above, it is easy to show that all pairs
of paths starting with u, in Fig. 7 and differing
only in the inclusion of some or all of the sides of
the middle triangle have weights which differ by
the proper factor. The proof that @& is the weight
group goes as before,

MATRIX REPRESENTATION

In what follows, it will be necessary to have a
matrix representation for a certain quotient group
of the weight group &. If ® = {ab} denotes the
normal subgroup of & of order two which is gen-
erated by ab, the group to be represented is $=/R.
We will continue to use «, 8, etc. to represent
(hopefully without confusion) the cosets to which
they belong in = &/R. The coset containing
a and b will be denoted by —1.

A. The Square Lattice

The relations which define § = &/ for the
square lattice are

ot = B = Bapé = I,

2 A2
A -1, ad = da.

=N

o =

A matrix representation in 2 X 2 matrices of 9 is
given by

a= (3 B =@ o
B. The Triangular Lattice

The relations which define $ = &/ for the
triangular lattice are simply

o =p8=—1

CQ=(_:)(1’7

Thus, a representation is possible in terms of twelfth
roots of unity. We have
B=—1,a=4a

= exp (r/6),v = 9 = exp (471/3),

The bar is written as a superscript because of
typographical difficulties.
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C. The Honeycomb Lattice
The relations defining $ = &/® in this case are
o = = afaf = —1I.

Unfortunately, we have been unable to find a rep-
resentation for § in terms of matrices of usefully
small order. There is one representation in terms
of 6 X 6 matrices which we will mention in passing.
We set

0 A O 0 0 A4
a=10 0 Bj g=(B 0 0]}
AB 0 O 0 BA O
where A and B are the 2 X 2 quaternion matriees
A=(Go, B=(10.

and where 0 is 2 2 X 2 zero matrix.

LOW-TEMPERATURE EXPANSION

Let £ be a lattice of one of the three types under
consideration having N vertices labeled ¢ = 1, 2,
.-+, N, and let any vertex have an even number
of edges touching it. Edges in the lattice have d
different orientations or directions. For the square
lattice d = 2, while for the honeycomb and triangular
lattices d = 3. In the Ising model a spin coordinate
o; = =+1 is attached to the ith vertex, and between
any two nearest-neighbor vertices ¢, j in the s
direction, there is postulated an interaction energy
constant J, = K;;. The partition function is then

N
Z eXp {A Z K,',-G'I‘U'j +B EG"‘},

apins edges i=1

Z:

where 4 and B are suitable constants depending
on the absolute temperature 7T, a magnetic moment
#, and an external magnetic field 5¢. Low temperature
expansion formulae are known for Z (see, for ex-
ample, Newell and Montroll). In particular, it is
known that

Ze) =C" X

m,ny, . nd

ng_m

s xy2T,

@)

gv(m;ng, -+, naal’

where C is a suitable constant, and where
z, = exp (—2J,/kT), 2 = exp (—2uH/kT).

The coefficient gy(m; n,, --- , ng) is the number
of closed graphs in the dual lattice £* (the lattice
formed from £ by drawing an edge bisecting each
edge of £ and connecting these new edges at points

7 G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25,
353 (1953).
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in the center of each unit cell of £) having n, edges
in the direction s* (the direction perpendicular to s)
and having m enclosed units of area. The sum in
(2) is taken over all closed graphs in £*

We are especially interested in the case in which
the magnetic field is so chosen that z = —1, i.e,
3 = 1kTw/2u. In that case, we can write

Z(-1) = C" 2 hslmjm, -

1,0, Nd
m=0,1

, nd)

X a2y - 2 (=1)"
where hy(m; m,, --- n4) is the number of closed
graphs in the dual lattice having n, edges in the
direction s* and having m(m = 0, 1) (mod 2)
enclosed units of area. Following the lead of Feyn-
man, we now propose a method for evaluating
Z(—1). Let p be any closed path in the dual lattice
£* having n, edges in the direction s*. Let W(p) be
the weight assigned to p according to Rule 1 by
means of the weight group @* of £* If W(p) is
either T or ab, we take W(p) = 1; otherwise, we
take W(p) = —1. We then form the sum

o v Wkl - a3 @

taken over all possible closed (directed) paths p.
Then we claim that

Z(—1) = C" exp (—8/2). 4)

One can give a rigorous proof of (4) along the lines
of argument in Sherman*'® where the evaluation of
Z(1) is considered. The only formal difference in the
evaluation procedure for Z(1) and Z(—1) is in the
choice of weighting W(p) for closed paths p. For
Z(1), one takes W(p) = 1 if W(p) is I or b, and
W(p) = —1 otherwise.

A small simplification is achieved if one assumes
that the weight W(p) associated with a closed path
p is formed as an ordered product of the elements
a, B, ete. considered as representatives of the cosets
in @*/Q. In this way, W(p) is automatically identi-
fied with 1 or —1, i.e., with W (p).

CALCULATION OF Z(—1)

An explicit caleulation of Z(—1) will now be made
for the square and honeycomb lattices with N
vertices. Theoretically at least, one can also make
the corresponding calculation for the triangular lat-
tice. However, there are practical difficulties in
tarrying through the computation. In our caleula-
cions, boundaries will be ignored. Heuristically, this
is equivalent to examining the dominant part (as
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N — o) of Z(—1) for lattices embedded on the
torus. In the case of torus embedding, the number N
of vertices (and hence squares) must be even in
order that our evaluation of “enclosed” area (mod 2)
of any closed path will make sense. On the torus,
there is no real distinction between the inside and
outside of a nonintersecting closed path, so the
number of area units in the two regions determined
by the closed path must have the same parity.
Perhaps this explains the point raised by Sherman*
in connection with the Lee—Yang formula (see be-
low).

In the evaluations, we assume that the weights
from &* commute with the indeterminants z; and
with the complex constants exp (27¢6) and exp (2=xip).

A. The Square Lattice

To evaluate S in (3), and hence Z(~—1), in this
case, we employ weighted random walks. The dual
lattice £* is again the square lattice. If we wanted
simply the number of random walks of length & in
£* (ignoring boundaries), we would introduce a
“characteristic” function &= ,, ,.-.1 exp (¢,27i0-+
c:2mip), which describes one step of the random
walk, and we would compute [ [} & df de. Although
the computation of S follows the same lines, there
is a complication in that each vertex of a path
corresponds to four “states,” one for each of the
directions of the path when entering the vertex.
Thus, we introduce the characteristic matrix 9 =
M(6, ¢) to describe one step of our weighted paths.

Bur, 0 Gvz, ol

M = 0 Buar, avr, &ir, ’ u = exp (2r16),
oux, &z, Pvz, O v = exp (2wip).
duzx, oz, 0 Biz,

It is noted that m,; gives the appropriate weight
(includes indeterminant ;) to the motion from direc-
tion ¢ through the vertex to direction j, according
to the labeling of directions in Fig. 8. We interpret
@, B, & to be cosets in &*/R. It follows that (ignoring
boundaries)

S=N iTr{‘/:foleGdcp}

k=1

_ _Nf: folTr {In (I — 9M)} d6 do.

The computation of Tr (") or Tr {In (I — 9IN)}
is complicated by the fact that 91 contains non-
commutative elements from ®&*/®. One avoids this
difficulty by introducing the matrix representations

GLEN BAXTER

Fia. 8. Labeling of directions, with
assignment of indeterminant, for square
lattice.

of &*/f presented in Sec. 5. Let M(h, ¢) = 9N
be the 8 X 8 matrix formed from 9 by replacing
a, B, & (and 0) by their 2 X 2 matrices

a=0 B=Go a=G0D.

Then,
1 1 N 1 1 1 ~
fofoTr(sn)de@=§fofoTr(sn)ded¢,
and we have

S = —%[folTr{m(I—sﬁz)}da@

1 1
—Nf [ 11— st| do de.
2Jo Jo

An incredibly tedious computation shows that
I —of = (1 — =)' — 22
‘ + 4231 — z3)* sin® 270
+ 4251 — z3)? sin® 2me.
Thus, to within a constant,

1
N

which is the Lee-Yang formula.’

1 1
1nZ(—1)—>1f f In |T — 5| d6 do,
44y Jo

B. The Honeycomb Lattice

In this case, the dual lattice £* is the triangular
lattice. At each point of the triangular lattice there
are six outward directions, which for our purposes
are labeled (with indeterminants) in Fig. 9. To keep
track of the position in the lattice, we introduce the
complex weights v = exp (2m¢8) for a step in direc-
tion 1, v = exp (2wip) for a step in direction 3,
and w = exp [27(0 + ¢)] for a step in direction 5.
Steps in the opposite directions are assigned the
conjugates. The characteristic matrix I = M(F, ¢)

Fia. 9. Labeling of directions, with
assignment of indeterminant, for tri-
angular and honeycomb lattices.
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in this case is then

[—2u O TIH el AT YTl
0 — 0 XV YLD YTaWw  &xsW
YT M G — o0 0 ax W YD
M = ,
aru  yri 0 —Z 0 Yraw  oxsd
arMU VXU XY YLD —Tw 0
L y2 4 ol YTy &XD 0 — 230

where a = exp (7i/6) and v = exp (4n¢/3). Ignoring
boundaries, we have that

1 1
S=—N[fTrln(I—fm)d0d¢
v 0 0

1 1
=N [ [ 01— masde.
0 0

By means of an even more tedious calculation than
that for the square lattice, one can show that

I — o] = (1 4 2D + 22)(1 + 23) — 8z:727s
+ 2z,(1 — 22)(1 — z3) cos 2n 6
+ 22,(1 — 251 — z}) cos 2mp
+ 22,1 — 2D — 22) cos 2n(6 + ¢).

Thus, to within a constant,

(5)

1 1 1 1
ﬁan(—1)—>§fo fo In |/ — 9| d6 de,
where |I — M| is given in (5).
C. The Triangular Lattice

In this case the dual lattice £* is the honeycomb
lattice. At each point of the honeycomb lattice,
there are stz possible outward directions, three of
them being excluded for the particular point in
question. Thus, we can once again take the labeling
of Fig. 9. We can also use again the complex weights
u, v, and w for keeping track of the position in
the lattice. The characteristic matrix 9 = M (4, o)
in this case is

o 0 0 ax Brw O |
0 0 arw O 0 Bx; W
o = 0 Bxrw O 0 azw O ’
Brou O 0 0 0 azsw
azu 0 Bz 0 0 0
LO ax@ O Bzb O o
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where a and 8 satisfy the group relations o® = g* =
afaf = —1I. It follows that (ignoring boundaries)

S = —NfolfolTr{ln(I—sm)} a9 de.

The complication that 91* contains elements from
the noncommutative group ®*/® comes back to
haunt us here. If one attempts to avoid a direct
computation of 91* by the method of substituting
a matrix representation for « and 8 in 9N, one finds
the resulting composite matrix of relatively high
order. If in particular we form 9 by replacing a, 8
and 0 by their 6 X 6 matrix representations given
in Sec. 5, we are led to the problem of evaluating
the determinant [I — 91| of order 36 X 36. (Egad!)
In any case, the final result is

1 1 1 1 -
ﬁan(—l)—»ﬁfn f In |I — 57| d6 do,

so the only problem which remains is to evaluate
[ — oml.
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ADDENDUM

Since the appearance of the original version of
this paper, Freeman Dyson and the author have
succeeded in finishing the evaluation of Z(—1) for
the triangular lattice. One begins with the observa-
tion that

a = 3G TR, B8 =13GX )
is a representation of the honeycomb lattice group
H = G/K: & = g8 = aBaf = —1. Substituting
these matrix representations for « and 8 into the

characteristic matrix 9% yields a matrix 9% and an

evaluation of |I — 9| gives

T — o =14 2221 — z2)* cos 4n(8 — o)
+ 228251 — z2)* cos 4w(20 + o)
+ 22525(1 — x3)° cos 4x(6 + 2¢)
— 4xizers + 2ixh + 2iah + 285, (6)

To within a constant,

1 1 1 1 -
NIDZ(“I)_’ZfO fo In I — 97| d6 do,

where |I — 91t/ is given in (6).
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The recently discovered conservation laws for the ‘“zilch” of the electromagnetic field (of which a
simple derivation is presented) are examined in the context of a general discussion of bilinear con-
served quantities in free-field theories. It is shown that there is always an infinite set of these quantities,
and a method of finding them all is presented and illustrated by applications to simple theories. The
existence of these conserved quantities is shown to be a consequence of the fact that the momentum-

space density is constant in time.

1. INTRODUCTION

EN new conservation laws for the electromag-

netic field in vacuum have recently been dis-
covered by Lipkin,' who has termed the correspond-
ing conserved quantities the “zilch” of the electro-
magnetic field. The present paper was motivated by
a desire to understand these laws. This investigation
has led to a more general study of conservation laws
for noninteracting fields.

We begin by presenting an alternative proof of
the conservation of zilch. We show that, by using
the dual tensor *F,,, one can write the zilch tensor
in a form in which it is obviously conserved in virtue
of the wave equation. In Sec. 3 we show that for
any noninteracting field there is an infinite set of
conserved quantities corresponding to densities which
are local bilinear functions of the field variables.
In any particular case, the entire set can easily be
found, as we show by considering some simple
examples.

These conserved quantities take on a particularly
simple form in momentum space. Their conservation
is a consequence of the invariance in time of the
momentum-space density. Thus it is only in very
special circumstances that we can expect any of these
conservation laws to carry over to the case of inter-
acting fields.

2. CONSERVATION OF ZILCH

The electromagnetic field is described by the
antisymmetric tensor F,,. It is often convenient to
introduce also the dual tensor *F,, defined by*

* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research
OAR through the European Office, Aerospace Research,
U. 8. Air Force.

1D, M. Lipkin, J. Math. Phys. 5, 696 (1964).

2 The notation is as follows: Greek indices run from 0 to 3,
and we use a metric with signature (L — 1 — 1 — 1) and
scalar product k*z = k°z° — k-x. The completely anti-
symmetric tensor is e with &2 = 1. Derivatives with
respect to z# are denoted by a comma.

*FE — %GMWFM,

Fo= —}e.,. F”. o))

Using standard identities it is easy to verify the

important identity
*F™F,, = L3 FF,, = §E-H. 2

In terms of F and *F, Maxwell’s equations may be
written simply

F’"', = 0, *F‘”.v = O' (3)
We shall define
Z‘:p = *F“)‘F)‘V.p - F“X*F)\V.n- (4)

Later we ghll show that this is equivalent to Lipkin’s
definition. Using the identity (2) differentiated with
respect to z,, we can write (4) in the alternative form
Zl, = *F*'F\,., + *F F™, — 18*F7F,, ,.  (5)

It follows immediately that Z is symmetric in its
first two indices,

v, =2", (6
and also traceless in the same pair
Z% = 0. ()

These are identities. From Maxwell’s equations
(3) we see that also

z*, =0, (8)
so that all the contractions of Z vanish. Making

explicit use of the symmetry (6) we can rewrite (4)
in the form

Z*,, = *F*3,F\, + *F,3,F™, 9

where A3,B = 1(AB, — A ,,B). Then it follows
from the wave equations

ar, =0, (10)
that

zZ* , =0, (11)
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and hence that the ten quantities

Z" = fdax z° (12)

are constants of the motion. These are the ten
components of zilch. [Actually, in view of (7), there
are really only nine components.]

Next we note that

zZi, — Z), = *F(F\,, — Fr,..)
— F“X(*F)‘,,, — *F)\P.l‘)
— '—*F")‘F,,'x _|_ F“)‘*va.k
= (*F™F,, — F**F,)) \, (13)

using Maxwell’s equations first in their cyclic form
and then in the form (3). The right-hand side of
this equation can be expressed in terms of the
Maxwell stress—energy tensor

T, = F*F,, — 18:F°F,,.
It is easy to verify that
*prugre _ prekpre L&, — e,
— N Y
It follows, using 7%, = 0, that
Z = (= T,
+ Ty = T, (1)
Taking the divergence with respect to the index p
and using (11) we find that
z* ,=0.

Hence Z is divergence-free in all its indices. How-
ever, the corresponding conserved quantities are not
independent of zilch, because for p = 0 the right
side of (14) can always be written as a spatial
divergence (using conservation of 77,).

It is easy to establish the relationship with
Lipkin’s definition of zilch, using (14). In fact,

vap — %(ZM“ + vau) + %(ex)\puTrK + EK)‘”T“‘),)\,

and the right-hand side of this equation may be
identified as Lipkin’s expression [Eq. (4) of Ref. 1].

It is evident that the conservation of zilch follows
directly from the fact that Z ean be written in the
form (9), and that the fields satisfy the wave equa-
tion (10). We shall see in the next section that
there is a large class of conservation laws of this
type for any free fields.

3. GENERAL FREE FIELD

Let us consider a free field ¢ with n real com-
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ponents ¢, which satisfies the Klein—Gordon equation
for mass m,

(O + mY)¢ = 0, 15)

and possibly some additional subsidiary conditions.
We write the plane-wave decomposition of ¢ in the
form

6@ = o [ TR v + gt @), (0
@n*J 2k’ !
where k° = (k* + m®)). The Fourier component
¢(k) has the form
o®) = 3 a.®u.(k), (17)

@

where the u,(k) are a complete set of c-number
solutions of the subsidiary equations.

Now let us consider the conditions under which
a bilinear expression of the form

J, = ¢P,(i3, id)e (18)
satisfies the continuity equation
J?, = 0. (19)

Here P,(%’, k) is an n X n matrix polynomial in
the components of the 4-vectors &’ and k. The expres-
sion (18) may always be symmetrized so that P,
satisfies the condition

Pk, k') = £P,(', k), (20)

with the upper sign for Bose fields and the lower one
for Fermi fields. Clearly, a sufficient condition that
(19) should follow from (15) is that P should satisfy

(k, + EDPE', k) = 0 (21)
for all 4-vectors k and %’ such that
kz _ k/Z = mz- (22)

In particular, it is sufficient if P, is proportional
to (k, — I&;); that is, if J, involves the two-sided
derivative 4,.
To find a necessary condition, we may substitute
(16) and (17) into
Q= f &z J°, (23)
It is easy to see by inspection that Q will be a
constant of the motion if and only if the terms in
aa and a*a* are identically zero. The condition for
this is
Ga(—K)P° (K, —k; k°, K)up(k) = 0. (24)

Sil.lce for this case k', -+ k, is in the time direction,
this amounts to requiring that (21) should hold for
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all the components satisfying the subsidiary condi-
tions. This condition is clearly also sufficient to
guarantee that J* satisfies (19). When it is satisfied,
@ reduces to

1 d’k
@ = gy [ ol TR R
provided that we subtract out the vacuum expecta-
tion value in the usual way.

We turn next to the problem of finding all the
conserved quantities of this form. Evidently, many
different matrix polynomials P, can lead to the same
conserved quantity @. It will be convenient to
introduce the variables

— 30— k), g = 3G+,
which in view of (22) satisfy

Po(—k, k) kk)

oK), (25)

P+q¢=m" pg=0

The conditions (20) and (21) then take the form
Pﬂ(—p! Q) = :!:PP(pr q)v (26)
¢'P,(p, 9 = 0. 27)

Since @ depends only on P,(p, 0), two polynomials
which become equal for ¢ = 0 lead to the same
conservation law. Hence it is unnecessary to con-
sider any terms in ¢, and we may restrict our
considerations to polynomials of p alone. To il-
lustrate the method, we consider some simple
examples.

4. EXAMPLES
A. The Scalar Field

For a real one-component field, P, must be an
ordinary polynomial in p, and by (26) must be even.
Hence we have the sequence of possibilities

Pp = DDy PoDuPyy """ - (28)

All these evidently satisfy (27). The corresponding
currents are

Jouw = —¢ 5 3 ®,
Jpnrv = ¢5 3 3 H 9 &, (29)
ete., and the conserved quantities in momentum

space are

)
®

@ = G [ G W w0,

wve _1_ dak B3I VIO
Q" = @' ) Kk ¢* & (k),

ete. The first of these is of course the total momen-

(30)
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tum, and it is easy to verify that J,, differs from
the usual stress—energy tensor

Tpu = ¢, — %gou@")“#)\ - m2¢¢)
by an explicit divergence. In fact,
Tpu - pn = 4(¢¢) [ %gw(‘i"i’)')‘h

which is always a spatial divergence for p = 0.
If the field is charged, it has two components
which are connected by the charge matrix

N

In this case, there are sequences of symmetric
matrix polynomials similar to (28), but also an
antisymmetric sequence

P = gp,, QPoPuPvs °

The first of these yields the usual charge current
J, = ¢:9,¢,, and total charge

- o5 | 6 W),

B. The Spinor Field

3D

Next we consider a real (Majorana) spinor field
satisfying the Dirac equation®

my.

The matrix P, in this case must be a linear combina-
tion of the sixteen matrices B, 8v,, 80.,, 18Y.Ys BYs-
However, @ involves only the matrix elements
ut(P)P,u(p). Thus, because of the identities

ma(p)y,u@) = pap)u),
mua@)iv'y'up) = 1" pia(p)oau(p),
mi(p)ysu(p) = 0,

it is sufficient to consider matrices P, proportional
to either 8 or (0,,. Moreover, since

pa@)o.u(p) = 0,

it is unnecessary to consider any contractions be-
tween p“ and the spin matrices.

It follows from the symmetry condition (26) that
B8 must be multiplied by an even function of p and
Bo., by an odd function. Hence we obtain the two
sequences

P, = p,p.B, DPDDB, -,
PP = pﬂﬁalﬂ‘} 2 o N[

# We use a Majorana representation of the Dirac matrices
in which all four Dirac matrices v, are pure imaginary,
and B, B, ﬂ:r,,,,, 1/37’#'75’ Bvs are Hermitian. We write o, =
'%’L['Ym 'Yv] an = B

7'.'7“‘[’.# =
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The first two of these yield the currents

= '_"; 5;» 5» ¥, qur = ‘p 5,, Tur ¥, (32)
and hence the conserved quantities
L _1_.__ dsk Lot
d’k v
- G | 5 PR, (33)

As before, @* is the total energy—momentum of the
field, and J,, differs from 7,, by an explicit diver-
gence.

C. The Vector Field

For the spin-one field the role of the ¢-number
solutions u(k) is played by the polarization vectors
e(k). If we denote the matrix elements of P, by P,?,
then the condition for conservation is

¢’<lPNp)ar = 0. (34)

From the polarization vectors we can form three
irreducible tensors,

¢/ e, elen — efe,, and eley + efe, — 2gas’ce.

It is unnecessary to consider terms in which any
of these are contracted with p, because such terms
yield vanishing contributions to . Moreover, none
of these tensors is itself automatically orthogonal
to ¢. Thus the only way of satisfying (34) is to make
P, proportional to p,. Hence we obtain three sets
of possible polynomials

y . WA DeDuDDE €, - ;
Pp(siex -
DDu(Eler + elee — 3gac’ ), -

(35)

ged, v ;

It is a simple matter to write down the corresponding
conserved quantities, but we shall not do so explicitly.

D. The Electromagnetic Field

It is of course possible to regard the electromag-
netic field as a special case of the vector field, and
the polynomials listed above do indeed yield con-
served quantities for this special case. However, most
of them are not gauge invariant. The corresponding
densities are local functions of the vector potential
4, but not of the field variables F,,. To find gauge-
invariant conserved quantities we could proceed by
looking for linear combinations of these polynomials
which vanish when e is replaced by & or ¢ by %'
However, it is just as simple to start again, using
the F,, instead of the A, as field variables. We have
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to find polynomials P, such that
1TOP, ™ (D) = 0 (36)
for all f,, satisfying
fuvk, = 07 *fu-k, = (37)

We proceed exactly as before. From f/, and f,,
we can form six irreducible tensors, four symmetric
in f and f, and two antisymmetric. They must be
multiplied by even and odd functions of p, respec-
tively. As before, we need not consider terms in
which any of the tensors is contracted with p,
because these yield vanishing contributions to Q.
Two of the six tensors (those corresponding to
energy—momentum and zilch) already satisfy (36)
by virtue of (37). The remainder must be multiplied
by p,.

Three of the six possible types of polynomial are
in fact trivial, and yield vanishing conserved quanti-
ties Q. These are the ones whose first members are

ppp»%f”)‘ Ay PoPux *f”)‘f)« »
pﬂ%(f’u)jxr - f,v)\f u) .
[To see this, note that in @ we have f,,=%(p,s,—p,¢,),
f’m = z(pus: - pvelu)’ with p2 = pe=Dp- ¢ = O]
Hence we are left with three families of polynomials,

two symmetric ones and one antisymmetric. Their
first members are

ol + Fafs) = dguf ol
which yields energy-momentum conservation,
PGl + 2 ) — dgw*f o],
which yields conservation of zilch and, finally,
PP [(f wfn + Fodin + e + 0t
= 39, o + Frf"D
= 390’ uf” + '0h) + 29080l «of""].

These three sets correspond to the three sets (35)
obtained for a massive vector field (though of course
the correspondence is not one-to-one, since some
members of the latter sets cannot be made gauge-
invariant).

We note finally that in momentum space the
conserved zilch tensor takes the form

(2 ) fdko (ku YoXA + kv urx)\)k

X A%(k) A\(k),
or, equivalently, in the Coulomb gauge,
w_ —1 [dk 2k“k’
Z" = @ ] o ——k-(A*xA).
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5. CONCLUSION

We have shown that for any free field one can find
an infinite set of conserved quantities with densities
which are local bilinear functions of the fields.
Physically, these conservation laws are a direct
consequence of the fact that the momentum-space
density ¢(k)¢'(k) is constant in time. Very few of
them can be expected to carry over to the case
of interacting fields, apart from the ones associated
with known symmetry properties, though of course

KIBBLE

a conservation law valid for interacting fields must
reduce to one of those listed when the interaction
is turned off. Most of these laws are probably of
little practical importance, though for some purposes
it may be useful to have an exhaustive list.
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It is shown that the equation T,9(T** + T¢**), + T#*(T,, — Ta,)* = 0, where T, is a null anti-
symmetric tensor and Ty its dual, is necessary and sufficient that there be a two-component Majorana
neutrino field. That is, the neutrino field may be described solely in terms of tensorial quantities and

operations, without the need for spinors.

1. INTRODUCTION

HE statement is often made in the literature

of physics that spinorial quantities, for example
the Dirac ¢, are necessary for the description of
the properties of the fields of physics. The implica-
tion is that it is not possible to use only tensorial
quantities to describe nature, and such is simply
not the case. One can, in fact, with a little effort,
avoid the use of spinors in describing the electron,
for example.

Whittaker' showed in 1936 that the Dirac equa-
tion could be written in vectorial form. Nonetheless,
he did not really complete the process. Our aim
in the present work is to write down a single equation
for a single tensorial quantity which will replace
the usual equations for the neutrino. That is, we
will show that a tensor equation for an antisym-
metric null second-rank tensor is necessary and
sufficient to describe the two-component neutrino.

Our analysis might be presumed to be rather
academic in scope and aim, but such is not neces-
sarily the case. Quantum mechanics and general
relativity are not unified yet, and any avenue of

1E. T. Whittaker, Proc. Roy. Soc. (London) A158, 38
(1936).

approach to such a unification must necessarily
accomplish the aim of describing fermions in a way
compatible with the formalism of tensor analysis.
Another point of interest which our analysis is
applicable to is the following. Classically at least,
the energy and momentum of a field is mathe-
matically described on the basis of a Lagrangian
formalism. That is, conventionally one defines the
energy—-momentum tensor as that which is conserved
due to translational invariance of the Lagrangian.
If, for example, one could describe the neutrino
tensorially, one might then find a vastly different
Lagrangian formalism, which in turn would lead to
a different coupling of neutrinos and gravitation.
Before proceeding, we remark that we will use
a very common notation, with Minkowski coor-
dinates (z, = 7ct), such that the spatial components
of vectors are real, and the time component imagi-
nary. In general, the notation is that of Roman.’

II. MAJORANA NEUTRINOS
We consider a two-component description of the

2 P. Roman, Theory of Elementary Particles (Intersecience
Publishers, Inc., New York, 1961), 2nd ed.
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neutrino® given by where we have defined
v = 0, ) P, = w)@,¥) — (@Y, (18)
V=¥, @ Q. = i) — i@ Pve¥- (19)
where Next, using the results of Whittaker' as a guide,

we may easily show that
VYr + VY = 28, @)

Y = C‘;e — C’Y“’* @) (BXV“)T,,, = V.Py, (20)
v = —C,C. ®) OV, = = V.0, @)

The symbol t denotes ordinary transpose, * de-
notes complex conjugate. C is the Schwinger matrix.

We use the Majorana description solely for con-
venience. The Weyl or Lee~Yang description would
do as well for our analysis. With our description,
the only nonzero bilinear covariants available are

V. = vy, (6)
Tuv = %il;('Y#'Yv - 7»7#)\0’ (7)

*Tuv = %i‘p')’s('Yu'Yv - 'Yﬂ’n)‘l/) (8)
where *T,, is the dual of 7,,, i.e.,

*T,u = _%eu’aﬁTaﬂ- (9)

Using results reported elsewhere,* we know that
V.V,=0, T.,T., =0, T.,*T,, =0, (10)
T,V,=0 *T.V, =0, an
T.T., = V.V, = —*T,*T,,, 12)

where the summation convention on repeated indices
is used.

It follows that T, has but four independent (real)
components. These four components correspond to
the fwo independent complex components of .

For further development, it is convenient to use
a Majorana representation® of the y,. In this rep-
resentation,

Vo= v (13)
so the four components of ¢ are real. We readily
calculate the components of our bilinears. For

example,
Vi=va+ ¥i— ¥i— ¢ (149
V, = —2('1/111/4 + 'Pz‘l’s); (15)
and so on.
Now let us see what differential equations the

bilinears obey as a result of ¥ obeying the Dirac
equation. We easily see that

8T, =P,,
aM*TM' = QH
3 Reference 2, p. 306.

4 R. Penney, J. Math. Phys. 5, 1657 (1964).
& Reference 2, p. 126.

(16)
an

after a trivial calculation which is best done by
calculating a few components of each side of the
equations,

II. THE CONVERSE PROCESS

We know that if ¢ obeys the Dirac equation, our
bilinears obey certain differential equations. We may
then investigate the problem of whether the opposite
is true.

The answer is that we may write down a set of
differential equations for 7T,, which allow us to
retrieve our ¢ and its Dirac equation. To see this,

write the Dirac equation in our representation: _
A= —01¥s + 891 — 33 — 8.9, = 0, (22a)
B = 9,y + a2 — a9y — 194¢5 = 0, (22b)
C = 0¥y — Gays — ¢y + 10.¢¥, = 0, (22¢)
D= —8,yy — 8¢y — sy + 10,4, = 0. (22d)

Now, consider the vector relation expressed by
0,{Ty, + 1 *T,,} = P, +1Q,, (23)

where the ¢-factors are to ensure the appropriate
reality conditions. By writing out our four equations
explicitly, we have

('1’1 + 'I’a)A - (¢4 + ‘l’z)D + (‘h - ‘l’z)B

+ (W — )0 =0, (24a)
(¥s — ¥2)A + (41 — ¥)D + (¥s + ¥1)B

+ (e + $)C =0,  (24D)
('I’z + \04)1‘1 - (‘/’1 + 'Ps)D + (\01 - ‘I/S)B

+ (Y — ¥)C =0, (24c)
¥s — YA + (¥ — oD — (¢ + ¥o)B

~ W+ )0 =0. (24d)

Unless the determinant of coefficients vanishes,
we will have that 4, B, C, D vanish. However the
determinant is, explicitly,

—W ¥ — ¥ — ) = -T2, (25)
and therefore vanishes only if ¥, the first component,
of V, should vanish. In general, it is not possible

for V, to vanish. That is, we may by accident find
that ¥, vanishes in some particular Lorentz frame,
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but by a simple transformation we can always ob-
tain a frame in which the determinant does not
vanish.

We must conclude that we have a vector equation
which implies ¥ obeys the Dirac equation. Thus,
if it is possible to obtain ¢ from knowledge of T,,,
we have necessary and sufficient conditions.

Whittaker' has shown explicitly that a null self-
dual tensor is equivalent to a two-component spinor.
We will not repeat the analysis here, but it is clear
from his results that, given a null antisymmetrie
tensor 7',,, we have always a corresponding spinor
(01, ¢2). The real and imaginary parts of ¢, and ¢,
correspond to our four real components ¥, ¥Wals.
It is easy, but unnecessary, to detail the prescription
for ¢, in terms of ¢, and ¢, and thus in terms of
T... We are already in possession of such a cor-
respondence implicitly.

IV. TENSORIAL DESCRIPTION OF NEUTRINOS

We are now able to write down a single tensor
equation for a single tensor quantity which is equiv-
alent to a two-component spinor description of the
neutrino.

For this purpose we will, at the risk of some
confusion, use real coordinates, as appropriate to
the tensor analysis of general relativity. First, we
recapitulate what we have found.

The analysis in the previous section shows that,
given a null antisymmetric tensor T,,,

7.7, =0, Tuv*Tuv = {, (10)

we may derive the vectors V,, P,, @, by the pre-
seriptions (due to Whittaker'):

T.Te = V.V, (12)
(a)\V,,)T,,, = V,P Ay (20)
(a)\Vu*)Tnv = _VVQX) (21)

and may also find the spinor (¢;¢,;) or the Majorana
wavefunction ¢ by Whittaker’s prescription.’
If, then, we subject this tensor to the differential
equation
a“{T,,, + i *T,w} = P; + in, (23)
we indeed have neutrino physics. However, this

prescription does not fulfill cur aim.
Let us therefore define the combinations

Se. =T, +1*T,,, (26)
A,=T, — 1 *T s (27)
Ry = P, + 1@\ (28)

Then, if our differential equation is obeyed we have
(6) VM)AIAP = Vyap’spk (29)

R. PENNEY

by eliminating R,. We then use

A,V, =0 (30)
to write
— V.4 = V.3,8,, 63Y)
and multiply by V; here to obtain
ViV,0,8n + ViV,004,, = 0. 32)

We then use the fact that V,V; can be expressed
in terms of T,,, to write

T3.7,.0,80 + T5.Tu00A, = 0, 33)
which will be so certainly if
T..8,80 + TodhA, = 0. 34
In terms of T, alone, this last equation is
T,,0,(Tpn + ¢ *Tp) + Toun(Twy — ¢ *T,) = 0.
(35)

We write our equation for T,, in the form ap-
propriate to general relativity, by using real coor-
dinates and the covariant—contravariant notation.
With a bar (|) denoting covariant differentiation,
we have

TYT™ + T, + T T ~ Taw)™ = 0,

where T is the dual tensor to 7",

(36)

V. CONCLUSIONS

We have shown that a single tensorial equation
involving a single tensorial quantity may be written
down which is necessary and sufficient to ensure
that there exists a ¢ function which obeys the
Dirac equation.

The tensor equation which is equivalent to the
Majorana theory of the neutrino is not very simple,
but it does exist. We could, in fact, describe the
neutrino solely in terms of a null antisymmetric
tensor if we so desired, at least classically. Such a
procedure would be decidedly inelegant in general,
but could be useful for certain purposes.

At least our results should serve to remove some
of the mystery surrounding the use of spinors in
physics. It may be much simpler to describe the
neutrino with spinor calculus, but it is not necessary.

A similar program may be carried out for the
general four-component electron equation, of course,
but there seems no compelling reason to do so at
the present time. Whittaker’s' results show that,
in prineciple, one does not need spinors to describe
the electron.
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A set of necessary and sufficient conditions involving only the metric tensor and the Einstein
tensor G,, are given which thereby guarantee that @,, may represent the stress-energy tensor of
a massive real scalar field. One of the conditions is nonlocal, and is a demand that the energy tensor

vanish at spatial infinity.

INTRODUCTION

N 1925, Rainich' succeeded in showing that one
could geometrize the Maxwell source-free electro-

magnetic field. That is, Rainich showed that there
was a set of algebraic and differential conditions
which one could impose upon the Einstein tensor
(,, which would ensure that G,, would represent
the Maxwell stress-energy tensor.

Wheeler’ and his collaborators have used the
Rainich results in attempting to understand the
diverse connections between geometry and the clas-
sical field theories of physics.

In the present analysis, we wish to show that
there exists a set of algebraic and differential con-
ditions which are necessary and sufficient that G,,
should represent the stress-energy tensor of a mas-
sive, real, scalar field, i.e., a ““meson.” Previously, we
have displayed the conditions for a massless® real
scalar field.

The problem of the massive scalar field has been
treated by Peres,* who found certain necessary con-
ditions which must be true for a tensor to represent
the stress-energy tensor of a “‘meson.” However,
Peres did not find all of the necessary conditions,
and did not show sufficiency.

In the next section, we will examine the necessary
conditions that a tensor must fulfill in order that
it may represent the energy tensor of a meson. We
will then prove the sufficiency of the conditions.

We adopt a notation as follows. The real coordi-
nates are z°z'z°z® where z° is ct. The metric is such
that, locally, the signature is (1, —1, —1, —1). The
Einstein tensor G,, is given in terms of the Riceci
tensor by

G., = R,, — 3Rg... 1)

The trace of a mixed tensor is denoted by the same

1 G. Y. Rainich, Trans. Am. Math, Soc. 27, 106 (1925).

2 J. A. Wheeler, Geometrodynamics, (Academic Press, Inc.,
New York, 1962).

3 R, Penney, Phys. Letters 11, 228 (1964).

4 A. Peres, Bull. Res. Council Israel, 9F, 129 (1960).

symbol as the tensor itself, without indices. For
example,

T =g¢"T,, =T, )]

Finally, covariant differentiation is indicated by a
slash between indices; with this notation, the con-
tracted Bianchi identities are

G.” =0. 3
II. NECESSARY CONDITIONS

We consider the usual stress-energy tensor for
a massive scalar field, viz.

Tuv = Ouoy %‘ppﬂ"pguv + %_kz(ng“” (4)
where
Pu = Qe = a‘p/ax“' (5)
We now define the tensor

Su = Tu — 1T00 = 00 — 30:6"Gurs ©

and also the two tensors
Un? = Snr + %(%Sabsab)iguv
w, =38,

Following Peres,* we could note that the necessary
and sufficient conditions that U,, be of the form
o0, where ¢, is a 4-vector are

Uann = Umr Unu (9)

but we prefer in the sequel to use the tensor W,,.
The reason for our choice is that we already know
the conditions which must be imposed upon W,, to
guarantee its form, viz.,

- %(%Sabsab)égnv = Qupy — %(ppgp’g“,. (8)

W' W,, = {W'g, (10a)

W <o, (10b)

Wo > 0, (10¢)

Wo — iWg ) {Wapry — Wayis} =0,  (10d)

as previously shown.’

1029
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The conditions on W,, are necessary and suf-
ficient that W,, be of the desired form, with ¢, the
gradient of a scalar.

The relation between T',, and W,, may be also
written as

T, — %Tgnv =W, — inuv; (11)

so that, in fact
Tuv = Wl-”' + )‘29;“‘7 (12)

where )’ is a positive-definite scalar function.

We need now write conditions on T,, which will
ensure that \* is no longer arbitrary, but is in fact of
the form 1%%,°, where ¢ is the scalar function which
determines ¢,.

First, suppose that )\’ is indeed of the form desired.
Then, we find that

)‘Ip)‘lv = %kz(an - %ngll’) (13)

Conversely, if this latter condition is obeyed, we will
have

Ma = £E%/ Ve, = E(k/V2e, (14)

where

A= 2(k/V2e + ¢, (15)

where ¢, is a fixed constant.

Now, physically speaking, T, must be a bounded
tensor in the sense that, for large spatial distances,
T,, should vanish. Otherwise, the energy and mo-
mentum of the field described by T,, would not be
bounded.

On the other hand, for large spatial distances, the
metric tensor must approach Euclidean values, un-
less one imagines distant sources of gravitation. We
are thereby led to demand that

lim T,, = 0, (16)
z'— .

The boundary condition on 7,,, which seems
necessary on physical grounds, is sufficient to elimi-
nate the undetermined comstant ¢,, as is readily
appreciated.

III. SUFFICIENCY OF THE CONDITIONS

Let T,, be a tensor which is restricted by the fol-
lowing conditions:

T’“I = Twu (173)
T,” =0, (17b)
Ty > 0, (17¢)
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T <O, (17d)
™7, > T°, (17e)

and the conditions given by Eqgs. (10a), (10d), (13),
and (16), where W,, is given by Eq. (8), S,, by (6),

=T - W), (18)

and &* is a fixed contant.
Using the tensor conditions, it follows immediately
that W, is of the form

(19a)
(19b)

as we have previously shown. Thus, T',, is determined
to be

Wuv = QuPy — %Qopﬂanguvy

Pu = Pluy

306" Gur + )‘zguv- (20)

Next, applying the conditions on \, we have

T = 000 —

>‘Iu)‘lv == %kz‘Plu‘Pln (21)
which gives unambiguously that
N=x&/V2e + c,. (22)

Therefore, we have the result
Ty =eup — %‘Pp‘Ppguv + (% 2902 =+ ‘/chkﬂp + czl,)gpn (23)

which will vanish for large spatial distances only
if ¢, vanishes.

Before closing this section, we must emphasize
that all of our conditions are conditions on the tensor
T... \* and W,, may be expressed entirely in terms
of T,, and are introduced only to avoid clumsy ex-
pressions. In particular, we have

N = 4T + [T, — 1T (24)

Thus, we have accomplished our aim. By replacing
T,, in our conditions by @,,, we have geometrized
the massive real scalar field, in the sense of the
Rainich geometrization of the Maxwell field.

A geometry in which G,, is restricted by our con-
ditions is interpreted as implying the presence of a
“meson” field. Such an interpretation follows from
the usual field equations of general relativity,

G, = «T...
IV. THE LIMITING CASE OF ZERO MASS

(25)

For the massless meson, we know that
™T,, = T, (26)

whence we see that W,, reduces to T,,, or, that is,
»* vanishes. The constant k¥* must also vanish, and
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our conditions reduce to

Tw = T,, (172)
T,"” =0, (17b)
Too > 0, (17¢)
T <0, 17d)
T*°T,, = 4T°g), @7
(T5 = 3Tg) Tapi» — Tanis} = 0. (28)
and Eq. (16).

Aside from the boundary condition, these re-
strictions are the conditions previously® found for
the massless meson. The symmetry, and the van-
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ishing divergence of T,, are trivial conditions since
the Einstein tensor obeys such identities.

V. CONCLUSIONS

We have found necessary and sufficient conditions
which must be imposed upon a Riemannian geometry
in order that we may consistently interpret the
geometry in terms of a massive “meson” field.

Analogously to the development of the Maxwell
field in terms of geometry,” the present analysis
permits a geometrical interpretation of a classical
field of physics.

Further analysis of the geometrodynamical con-
sequences of our conditions may be expected to
lead to deeper understanding of geometrodynamics®
itself.
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It is proven that one cannot construct boson creation and annihilation operators from a finite
number of fermion operators. The proof follows from the isomorphism of the fermion algebra and

the algebra of Dirac matrices.

I. INTRODUCTION

N the present analysis, we wish to address our-

selves to the problem of “making bosons from

fermions.”” Before proceeding further, we must clarify
this concept.

As usual, we consider a fermion field to be de-
seribed by a set of annihilation and creation opera-
tors in the Fock scheme. The anticommutation rules
for these operators are the usual ones. We wish to
investigate the possibility of combining such opera-
tors to produce a set of boson creation and annihila-
tion operators.

The connection between boson and fermion opera-
tors has been studied by Case," who showed that
one could not, for example, produce a theory of
gravitons using quadrilinear combinations of the
operators for a two-component neutrino field. Our
investigation will be more restrictive than Case’s
since we will consider only a finite number of fermion

1 K, M. Case, Phys. Rev. 106, 1316 (1957).

operators, but more general in that we allow more
general combinations of the fermion operators.

We intend to prove that one cannot form a boson
creation operator from a finite number of fermion
operators. Our result may help to explain, for ex-
ample, why the creation operators for Cooper pairs®
in the BCS theory of superconductivity retain their
Fermi-Dirac statistics.

II. TWO-FERMION PROOF

We consider the possibility of construeting a com-
bination of two fermion creation and annihilation
operators to make a boson creation operator. Let
us suppose, therefore, that we have two operators
Ay, A, and their Hermitian conjugates obeying the
rules

[4:, A]e = 0, [A;, A%, = 6, [A4%, 4%]. = 0.

@

2 J. Bardeen, L. N, Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1180 (1957).
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‘We then define the combinations
B, = A, + A%, B; = A, + A%, 2)
B, = i(4, — 4%), B.=1(4,— 4%, @3)

and we thereby summarize the properties of 4,, A,
as

B,B, + B,B, = 25,,, 4)
B* = B,. 6))

The set of operators B, is thus seen to be isomor-
phic to the Dirac v-matrices. As usual, therefore, we
may form the Clifford algebra® of the B, with the
members

1, B,, B.B,, iB.B,B,, B\B.B.B,, (6)

and generically denote the 16 members by I',, where
T, is the unit operator.

We may now use all of the well-known properties
of the T, to solve our problem. We ask whether a
function of the I, say f(T,) exists with the property:

[, ffl- = 1, @)

which is the minimal property of a boson operator
which we must demand.
First we note that, most generally,

16
f = Zaurn

#=1

®)

where the a, are c-numbers. The properties of the
I, ensure that no powers of T', occur. We separate
the unit element so that

16
f = Oy + Z aurm (9)
w=2
16
f*=at+ X2 ail, (10)
u=2
and demand that
16 16
> > aarr,I,). = 1. (11)

u=2 =2

The terms in a,, a* obviously commute with all
others, so our remaining sums do not include T,.
Since TI'; does not occur in the series, we may use
the well-known fact that each T', commutes with
eight other T', and anticommutes with eight others.
Thus every term in our series has the property

[r,T,]-. =0, or (12)

= 2r,T,. (13)

3 P, Roman, Theory of Elementary Particles (North-Holland
Publishing Company, Amsterdam, 1961), 2nd ed., p. 114.
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Our demand therefore reduces to
18 16 1

> > qatl,T, = 50

=2 y=2

(14)

where the primes denote the omission of the van-
ishing terms.

Now we recall that I',T", = 1 if and only if u = ».
But all terms for which p = » are excluded in the
primed sums because they gave zero for the com-
mutators. Next, we realize that I',T, is proportional
to some T, # 1, so our sum reduces to the form

18 1
Z QFPF = §

B=2

(15)
Renaming @, = —1 here, we see that we are
demanding

i Quru = OJ (16)

#=1

which, due to the linear independence of the T,,
would demand that @, vanish. Thus our demand is
absurd, and we have proved that we cannot con-
struct a boson from two fermions.

OI. N-FERMION PROOF

It is easy to see that method of proof can be ex-
tended to any finite number of fermions. We simply
form

B; = A; + A%, (7
B;;, = 1(4; — A%) (18)
for each fermion operator, and see that
B.B; + B;B; = 24, (19)
B* = B,. (20)

We thereby have the properties of the fermion
operators contained in a Clifford algebra of (2N)’
numbers. The basic properties we have used in the
proof for N = 2 are the same for any N, and the
proof follows trivially. Note that we are in general
allowing for products of 2N fermion operators in
our combinations.

IV. APPARENT CONTRADICTION OF
THE THEOREM

It is important to realize that, in proving our
theorem, we have assumed nothing about the states
upon which our operators act. The fact that one is
able to construct boson creation operators from
fermion operators, as illustrated by Case,’ is due to
further assumptions concerning the states utilized in
a particular theory. For example, if one supposes
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that the boson operators act only upon states of the
form of a “Dirac filled sea,” in which all negative
k states are filled for large k, and all positive k states
are empty for large enough k, then one ¢s able to
construct boson operators.

The well-known analysis* of the neutrino theory
of light uses the fact that neutrinos may be con-
sidered to occupy all negative energy states, and
assumes that all positive energy states for high
energy are empty. By this assumption, Born and
Nath® were first able to construct creation and an-
nihilation operators for photons from those for neu-
trinos.

Thus, our theorem illustrates the important point
that the commutation rules for operators may seem
to differ depending upon the assumptions concern-
ing the states upon which the operators act. Lieb
and Mattis,® for example, have found that certain
density operators for a one-dimensional electron gas
“model” have bosonlike commutation rules, due to
the existence of a filled Dirac sea, as first realized
by Born and Nath.®

Actually, the commutation rules of operators
should be independent of any assumptions concern-
ing the states upon which the operators act. Thus,
we are faced with an apparent dilemma which must
be resolved. To understand the problem, we may
consider a trivial example.

Let us suppose we have a single creation operator
of the fermion type, with its annihilation operator.
The only irreducible representation of the concomi-
tant algebra, as is well known, is of the form of
2 X 2 matrices,

a=@ 0, =@ 09, 1)
which therefore operate upon states of the form
v = o) + 0. (22)

Now it is possible for us to assume that our opera-
tors only act upon those states for which

ay = 0, (23)

in which case, our operators, acting upon such states
obey

aa* — a*a = 1, (24)

as is easily checked. The point is that our choice of
states upon which the operators act is a projection
of the whole space, and the ‘“‘altered” commutation

¢+ M. H. L. Pryce, Proc. Roy. Soc. (London) A1l65, 247
(1938).

5 M. Born and N. S. N. Nath, Proc. Indian Acad. Sci.
A3, 318 (1936).

¢ K. Lieb and D. Mattis, J. Math. Phys. 6, 304 (1965).
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rules are true only in the sense that the operators
themselves are altered. In the present example, our
restriction of states allowed only part of the opera-
tors to operate, and the apparent “boson’ rules we
obtained were meaningless.

In a similar manner, the apparent change of com-
mutation rules for the operators used by Case,' or
Lieb and Mattis,® obtains because of assumptions
concerning the Hilbert space wherein the operators
perform. To iMustrate this point quite clearly, we
consider certain operators, first used by Born and
and Nath.®

Let a,, a*% be a denumerable set of annihilation
and creation operators for fermions obeying

akakﬂf + ak"fa,, = 6kkf, (25)
@y + apea, = 0, (26)
atal + atat = 0, @27)
and define

R

/= Z a%a,.,, (28)
k=—R

R

= kZR at, (29)

where R is a large number.
Using the commutation rules, we easily calculate

R R
[f: *l- = Z ata, — E e 1rs, (30)
k=—R k=—R
which reduces to
[f; f*1- = a%za.p — a}i0z.. (31)

Now, the right-hand side of Eq. (31) has the pos-
sible values 0, 1, depending upon the assumptions
concerning the underlying Hilbert space. As ex-
amples we may consider three possible subspaces.
One subspace contains a finite number of occupied
states, in which event we may always take R large
enough to obtain 0. Another (unrealistic) subspace
has a ‘“filled sea” of positive energy states, with
negative energy states empty, and we obtain —1.
The last subspace is the usual “filled sea’ of negative
energy states, which gives +1 for our commutator.

Thus we really have no contradiction of the the-
orem proved in the present analysis. Nonetheless,
one can make boson operators from fermion opera-
tors, provided one operates only within a projected
region of Hilbert space, and that no operations in-
volved remove one from that particular region of
Hilbert space.
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As long as one considers only a finite number of
fermions, one may not construct bosons. If, however,
one allows a “filled sea’ of fermions, it is possible
to obtain bosonlike operators. Our theorem is not
true in the limit of N = o,

V. CONCLUSIONS

We have shown that one cannot construct boson
creation and annihilation operators from a finite
number of fermion operators. Incidentally, we have
seen that the commutation rules for fermion creation
operators are summarized in a Clifford algebra, a
result which has apparently not been noticed before
Using the isomorphism of the fermion operators with
the Clifford algebra, one can deduce the irreducible
representations very quickly. For one fermion opera-

R. PENNEY

tor, the algebra is the Pauli algebra, of course, and
that fact is commonly used.

We have also seen that the existence of a filled
Dirae sea with an infinite number of fermions allows
one to construct boson operators. As long as one is
careful to stay within the Hilbert subspace contain-
ing the filled sea, the commutation rules for the
boson operators remain valid. Thus, the boson opera-
tors constructed by Born and Nath® and recently
rediscovered by Lieb and Mattis® are not in con-
tradiction with our theorem.
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The restrictions on a previously reported class of exact eigenstates of the pairing-force Hamiltonians
are removed and it is indicated that all the eigenstates of this Hamiltonian can be included in this
class. Explicit expressions are given for the expectation values of one- and two-body operators in the
exact, seniority-zero eigenstates of this Hamiltonian. In particular, a simple expression for the occu-
pation probabilities of the levels of the single-particle potential is given. This expression may be easily

evaluated for realistic nuclear systems.

I. INTRODUCTION

N a previous paper,’ the exact eigenstates of the
pairing-force Hamiltonian for finite systems were
studied. This study was motivated by the wide use
of this Hamiltonian as a model Hamiltonian in
nuclear physics.” Some of the results of this study
were subsequently applied to pairing models of some
even isotopes of lead.® This application indicated
that there is a considerable improvement in the
accuracy of the model’s description of the excitation
spectra of nuclei when exact eigenvalues of the

* This work was supported by the AEC Computing and
Applied Mathematics Center, Courant Institute of Mathe-
matical Sciences, New York University, under contract
AT(30-1)-1480 with the U. 8. Atomic Energy Commission.

'R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221
(1964) (to be referred to as I). L

2 A. M. Lane, Nuclear Theory (W. A. Benjamin, Inc., New
York, 1964), Part I, and the references cited therein.

3 R. W. Richardson and N. Sherman, Nucl. Phys. 52, 253
(1964).

Hamiltonian are used instead of the currently fash-
ionable approximations to these eigenvalues.” Sim-
ilar improvements in the description of other nuclear
properties are to be expected from the use of the
exact eigenstates of this Hamiltonian. The study of
these eigenstates is continued in this paper.

The principal result of I was the demonstration
of the existence of a new “restricted class” of eigen-
states of the pairing-force Hamiltonian which can
be written in a particularly simple form. That is,
the wavefunction of an N-pair state in this class
was shown to be that of a state of N independent
pairs in which each pair interacts through an effec-
tive pairing interaction. This result is given below
in Egs. (1.1)-(1.12). The states of this class are
restricted by the set of subsidiary requirements that
the N single-pair functions which make up an N-pair
wavefunetion must be distinct. In this paper, we
will discuss these restrictions and indicate how they
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may be removed. The members of this class are
therefore shown to be completely general. We will
also consider the calculation of the expectation
values of one- and two-body operators in these
eigenstates.

In studying the restrictions on the eigenstates
given by Eq. (1.12) below, we find that they can
only be violated for a finite set of values of the
interaction strength. They are satisfied for all other
values. Thus, the results of I are valid everywhere
except on this discrete set of values of the inter-
action strength. This result is derived in Sec. V by
showing that if the restrictions are violated, then
the interaction strength must be a root of an al-
gebraic equation. If the interaction strength is equal
to one of these excluded values, then the wave-
function and energy of the state may be obtained
by treating them as continuous functions of the
interaction strength. Therefore, this continuity of
the wavefunction and energy is sufficient to remove
the restrictions and show that the eigenstates have
the simple product form given below for all values
of the interaction strength.

The remainder of this paper is devoted to the
calculation of the expectation values of one- and
two-body operators in the seniority-zero eigenstates
of the pairing-force Hamiltonian. The normalization
of the states is treated in Sec. II and we obtain a
simple determinental expression for their normaliza-
tion coefficients. A simple expression for the occupa-
tion probability of the levels of the single-particle
potential is derived in See. III. The evaluation of
this expression is shown to require the solution of
an N X N system of linear algebraic equations
whose coefficients depend upon the pair energies E,,.
In Sec. IV, we evaluate the expectation value of
bjb,. [see Eq. (1.3) for notation]. While the expression
that we derive for this expectation value is similar
to that given for the occupation probability, it is
not as readily evaluated. However, it does suggest
many approximations that may be used in particular
calculations. We do not consider off-diagonal matrix
elements or matrix elements which involve states
of higher seniority. These matrix elements will be
the subject of subsequent work.

The practical aspects of our results should be
emphasized. For a realistic nuclear system, Eqgs. (1.8)
may be easily solved for the pair energies. Once the
pair energies have been obtained, the occupation
probabilities of the single-particle levels may be
easily calculated, using the results of Sec. III, and
other expectation values may be calculated using
the results of See. IV.
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For reference, we list here the results of I that
are used in the subsequent discussion. The pairing-
force Hamiltonian is written as

H = ; 2N, — ¢ ; bib,., (1.1)
where the quantum numbers (f¢), ¢ = =+ denoting
states that are conjugate with respect to time re-
versal, label the states of an external potential and
¢, is the energy of the two states (f=). The sums
in (1.1) are all over a finite set of values of f and,
in what follows, all such sums will be understood
to be over this same set of values. The operators
N, and b, are given by

N/ = %(a;~af~ + a;+a,+) (1.2)
and
(1.3)

where a}, and a,, are fermion creation and annihila-
tion operators. The seniority-zero eigenstates of (1.1),
which have N pairs of particles, can be written as

vy = (v }: W(f -+ f)b), -+ by, [0), (1.4)

by = a,-ay.,

where |0) is the vacuum state. It is shown in I
that the wavefunction ¢(f, « -« fx) for a restricted
class of eigenstates may be written as

¢(f1 fN) = o(fl fN)¢(fl fN):

where

1.5)

0 -+ fv) = H - af,-f,-)

1<q

(1.6)

and

N
¢(fl e fN) = ; I)[II1 (2€fi - Epe)_l]' (17)
In (1.7), >» P is the sum of the N! permutations
P of the indices p, --- py which label the pair-
energies F,,. These pair-energies are roots of the
coupled system of equations

F(Em) = l/gi: t=1--. N; (18)
where
1
FE) = _— .
® = LoD 19
and
1 1 y 1
=2 Y :
v T E w mEy (O

The prime on the sum in (1.10) indicates that it
is over those values of j that are not equal to 7.
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In what follows, a prime on such a sum will always
be taken to mean this. The energy of this state
is given by

N
E= Y E,.
i=1
The indices p, - -+ py may be defined by
limE,, =2,, 4=1---N

g0

(1.11)

and are to be thought of as labeling the state under
consideration. The restrictions on these eigenstates
are contained in the additional requirements that
the E,, must be distinet, i.e.,

Eﬂ( # EPH

We defer the discussion and removal of the re-
strictions (1.12) on the solutions of (1.8) until Seec.
V while we consider the normalization of the states
in Sec. IT and the expectation values of N, and
bjb, in Secs. IIT and IV. These expectation values
are necessary to calculate the expectation value of
any one- or two-body operator.

II. NORMALIZATION OF THE
WAVEFUNCTIONS

for 7 #j. (1.12)

As our first example of the techniques that may
be used to calculate with the wavefunetions (1.5),
we calculate their normalization coefficients. Our
result will be a simple expression in terms of the
pair energies that may be easily calculated in re-
alistic situations.

In order to simplify the notation, we will write
¢; for ¢, and E; for E,,. There will be no confusion
over whether ¢ stands for f; or p; since this will
be clear from the context. In this notation, we have
the wavefunction ¢ (a function of the N variables
1 --- N,ie., f; -+ fy which is implicitly labeled
by the N indices 1 --- N, i.e., p, -+ - py) given by

o1 -+ N) = (NN CSy ﬁ (2e; — E)7,

+=1

@.1)

where we have introduced the normalization coeffi-
cient (N)7*C' and have denoted by Sy the sym-
metrizer on the & indices of the pair energies, i.e.,
Sy is the sum of the N! permutations of the N
indices which label the E..

The normalization coefficient is to be calculated
from the normalization condition*

Wlgy= 20 61 Mg’ -~ N) = 1.

We will show that this implies that C"*isan N X N
determinant. The diagonal element of this deter-

2.2)

R. W. RICHARDSON

minant in the (7, 7) position will be shown to be

N
C; — 2 EI E?h

i=1
where

¢ = }7‘, (2¢, — E)2 (2.3)

and

E.',' = (E, - E,‘)_l. (2.4)

The off-diagonal element in the (2, j) position will
be shown to be 2E%,.

Our derivation of the above expression for the
normalization is in two parts. In the first part,
we derive an operator-product form for C™* and,
in the second part, we derive a recursion relation
between the operator product for the N-pair system
and the operator product for an (N — 1)-pair sys-
tem. The above results are then proven by starting
with the easily calculated normalization of a two-
pair system and then using the recursion relation
to work up to the desired value of N. Throughout
this proof, we will assume that the pair energies
are distinct. In Sec. V, we will show that this assump-
tion is satisfied for all values of the interaction
strength except a finite set of values. The special
cases when the interaction equals one of the values
for which our assumption does not hold may be
treated by using an appropriate limiting procedure
similar to the one used in that section. We now
turn to the derivation.

An operator-product expression for C* may be
derived from (2.2) by making use of the recursion
relation

6(1 --- N) = 6(1 ---N—l)l:l-EBiN:I; (2.5)

between the #-functions of N and N — 1 variables,
to perform the sum. To make use of this relation,
we write C%, from (2.1) and (2.2), as

o = (V) I.Z..:N o1 - - - N)[SN INI (2e; — E,.)":'z

i=1

I

(ND'SySy > 61 -+ N)

N
X H (26,’ - E,‘)_I(QG; - E;')_l

i=1

Sk Z o1 -+ N)

N
X H (26; - E.‘)_I(zéi - E-")_ly

i=1

(2.6

where S} symmetrizes the primed indices ¢’ and
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sets 4’ = 4. Throughout this section, we will assume
that the prime on ¢’ is only a mark to distinguish
it from < for the purposes of symmetrization. Thus,
the factor in the product with ¢ = 1 is (2¢, —
E\)7'(2¢, — E..)7'. We rewrite (2.6) as

C?*=1Iy1---N), 2.7

where Iy(1 - - - N) is given by (2.6) and its arguments
are the indices on the E./s. These arguments will
be suppressed when it is not important to spell out
in detail what they are. We now substitute (2.5)
into (2.6) and perform the sum on the variable N

In=2S8 > 61---N—-1
1 1

e N—

X {[NII e — E) 72 — E)]

g1

X Z (2€N - EN)_1(2GN - ENI)_I
N

- N}_j [ﬁ 2e; — E)7'(2ei — Ew)"]@ei -E)”

i=1 =1
(i3}

X (2¢; — Ei’)—‘(25i - EN)_1(2€1' - EN’)_I}' (2.8)

We next define the “overlap integrals” ¢,; by

ci = 2, Q¢ —E) (2 —E)". (29
f

Note that, by (2.3), ¢;; = ¢;. Thus, the last factor

in the first term of (2.8) is cyy.. Since we have

assumed that the pair energies are distinct, we may

use a partial fraction expansion to rewrite the last

factors in the second term of (2.8) as

(2‘5:' - Ei)_l(zei - Ei’)~l(2€i - EN)_l(in - Enr')_l
= EiNEi’N’[(2€i - Ei)_l - (261' - EN)_I]

X [(2¢; — E;)™' — (2¢; — Ex)7")
= BivE; oy (2¢; — E)7'(2; — E;)7", (2.10)
where we have defined the operators £;; by
E; =1+ P,)E,, (2.11)

where P,; is the transposition ¢ <> j, operating on
the indices of the E/’s. Substituting (2.9) and (2.10)
into (2.8), we have

N-1
Iy = SJGI:CNN' - ZE:'NEi’N']
X X 61---N-=1

1. N~1

N-1
X H (2€¢ - E.‘)—l(zﬂ' - Ei’)_l

i=1

(2.12)
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apart from the reduction of N by one, the sum in
(2.12) is the same as the sum in (2.6). We may there-
fore perform the sums on the variables 1 --- N by
repeated application of (2.12) with the result that

i=1

Iy = SA'f[UNN'

X [022' - E12E1'2']Cu'- (2-13)

We may write (2.13) in a little more compact nota-
tion if we introduce the operators
L-1
L =Crp — Z;EiLEi’L“ (2.14)
Note that A, operates on the indices 1 --- L and
1/ --+ L’. In terms of the operators 4., Eq. (2.13)
becomes
N
Iy = 8 I] 4., (2.15)
k=1
where the order of the operators A, in the product
is such that %k decreases from left to right. In what
follows, all such operator products will be assumed
to be written in this order. Equations (2.7) and (2.15)
yield the desired operator expression for the normal-
ization coefficient.
It should be noted at this point that ¢,; for
1 # §, can be given explicitly in terms of the E,;’s.
For, if we first perform a partial fraction expansion

of the summand in (2.9) and then sum on f using
(1.8), we obtain

Ci; = E.-f(g?l e g?l)

N
= _4E?i + 2 Z" EkiEkiy

k=1

15 ], (2.16)

where the double prime on the sum indicates that
it is over those values of % not equal to 7 or j.

It is instructive to consider a simple example of
Eq. (2.15). We will also need the results of this
example to initiate the recursion relation that we
are going to derive later in this section. We therefore
consider Eq. (2.15) for N = 2, in which case we have

I, = Sioser — BiBys)eys
= Sil620rcirr — 2E,E5:(c1rr + €224)],
where we have used
SiB1aF, o
Si(1 + Po)(1 4 P,y )E B g
Si(1 + Py} + PPy oy )ELE, s
281E B, 5 (1 + P,Pyes)

(2.17)

(2.18)
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in the second term. Equation (2.17) may be re-
written as a determinant, i.e.,

I, = 8] Cir — 2B 1,E 5 2Bl 1y . (2.19)
2B 5B, o Cagr — 2B ,E,5
When we substitute ¢,; = —4FE?3,, which we obtain

from (2.16), into (2.19) we find that it is only the
identity permutation in S) that makes a nonzero
contribution to I,. Thus, we have

Cp — 2E?2 2Ef2
2Ef2 CZ - 2E§2

I, = (2.20)

In the general case, we will see that Iy can be
written as the natural generalization of (2.19) and

Cr117 — 2 Z, E“E,"l' 2E12E1’2’ Tt

l

Sk 2B, By
2B, By

Iy

and consider the coefficient of cyy- in this expression,
then we find that it has the same form as that
hypothesized for Iy_,(1 --- N — 1) in which, how-
ever, c,;» has been replaced by c¢;;» — 2EE/x'.
It is to be emphasized that we speak here only of
the explicit functional dependence of the Iy’s on
the E.;/’s and ¢,’s. Therefore, the Iy_,(1 +-+ N — 1)
mentioned above will not be related to the normaliza-
tion coefficient of an (N — 1)-pair wavefunction by
(2.7) because the pair energies E, --+ Ey_, that
appear in it are solutions of the N-pair equations.
We now show that the coefficient of cyy. in Iy is
given by Iy_;.

Let us denote by [X],;- the coefficient of ¢;;+ in
the quantity X. Following the outline given above,
we seck the coefficient of cyy. in Iy, ie., [Ixlyw.
In order to obtain this, we first write

N
Sy = Sya(1’ -+ N = 1) 2Py
i=1

where S4,_,(1’ --+ N — 1’} is the symmetrizer op-
erating on the indices 1’ - -+ N — 1’. We next write

N-1
SyAy = SA’I[GNN' -2 EEiNEi'N'] s
i=1
where we have used the rearrangement theorem to
write
SiBirs = 2840

We then have, from (2.15),

R. W. RICHARDSON

that when it is written in this form only the identity
permutation in S} contributes to Iy. Therefore, Iy
will be given by the natural generalization of (2.20).
This, of course, does not mean that it is only the
identity permutation in S} that contributes to (2.6).
For, we clearly needed all the permutations in S}
in order to write (2.18). However, it does mean that
we can collect terms and arrange them in such a
fashion that we can neglect all the permutations
in S} except the identity.

We will now derive a recursion relation that will
prove that the above determinental form of Iy is
true in general. The derivation is based upon the
following observation: if we hypothesize that Iy
has a determinental form similar to (2.19), i.e., that

2E1NE1'N'
(2.21)

b

Cxnr — 2 E' EZE; .y

[IN]NN' = SI’V_I(I' oo N — 1/)

N N-1 N-1
X [Z Pi'N'(GNN' -2 ZE.'NE."N') H Ak:lmv'

i=1 i=1 k=1

N-1
= Sy (1’ -+ N — 1'){H A4, — 2
k=1

N—-1

N1
X Z PiNPi’N’EiNEi'N’[kII Ak:l
=1

i,i=1

} . (2.22)

where we have neglected the identity operators in
>.i Py and B,y in the second term because these
operators act on ][} A,, which does not contain
cyy+, and therefore they can not contribute to [Iy]xy--
The evaluation of (2.22) proceeds with the evalua-
tion of [[J¥=! A.];;» which we do in two parts. We
will first evaluate the “diagonal elements’” with ¢ = j
and then turn to the “nondiagonal elements’” with
I
For the diagonal elements

N-1
).
k=1 (224

if’

we may write

-1
1]
k=1 X

N-1 i
= kH [A.@) — EikEi’k'][ Ak] , (2.23)
=i+l k=1 i’
where we have defined
L-1
Ar@, §, ) = opp — Zl BB (2.24)
(m#i, i, o)
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To this definition of A.(%, j, --+), we append the
convention that any one of the arguments ¢, j, -
that is greater than L — 1 is to be ignored. With
this definition, 4.(z7) — E;E;., which appears in
(2.23) is the same as A, with BB, ., replaced by
E..E, . We now prove by induction that

i i-1
[H Ak] = kII (Ak - EilcEi’k’)'
k=1 Qi =1

1, we have [4,],

(2.25)

For ¢ = . = 1 and, for 7 = 2,

we have
(454 )22 = [(coo — B1B12)A s
= A, — PP,y EuE o AL
= A, — EyEy ...

In the general case, we have

[II Ak]
k=1 i1’
=1
= [(cn" — Z
i=1
= H Ay —
k=1

Using (2.23) and the induction hypothesis (2.25),
we may write

[, - 0 wo-

(hi)

i=1

ZEE PP

) ],
o]

Ak]'. (2.26)

k=1

EiE;w]  (2.27)

in the second term of (2.26). Substituting (2.27)
into (2.26) and carrying out the indicated trans-
positions yields

i—1 i—1
(4] -Ta-S5m.
i k=1 im1

k=1
i—1

X H [Ak(]) -

k=1
(k=7)

E.E,.]. (2.28)

We now perform the sum on j in (2.28) by a
method that we will use many times in what follows.
The sum is done by first noting that the operators
in the second term of (2.28) do not operate on the
indices #j or 7'j’. We may therefore commute E;E,. ;.
past the first ({ — 1 — j) factors in the product
and place it in the position that A; would occupy
if it were present. We next observe that

E,’kEi’kaiiEi'i’
= Eik(Eii - Eik)Ei’k'<Ei’i’ -
= EiiEikEo"i’Ei’k’-

E..)
(2.29)
Thus, if we have commuted E;E, ;. past the first

(t — 1 — j) factors, then we may replace E.E;.,
in these factors by KK, .. Or, equivalently, we
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may replace 4,(j) — E.E;.+ by 4,. Equation (2.28)

then becomes

< i~1 i=1 i—1
[H Ak:l = H A, — Z ( H A,c)E',-iE;ri’
k=1 i’

k=1 i=1 Me=ji+1
i-1
X H (Al - EiZEi'l’)- (2.30)
1=1

The sum on j may now be performed. For consider
the term in (2.30) with j = 1. It is

i-1
‘(kII Ak)EuEi'x'
=2

and it may be combined with the first term of (2.30)

to give
i—1
(T ), -
k=2

The term with § = 2 in (2.30) is

i=1
- (;C[I Ak)Ei2Ec"2'(Al -
=3

and it may be combined with (2.31) to give

(11 4.)ca.

In this way, the sum on j in (2.28) may be done
and the result is (2.25) which completes the induc-
tion. Substitution of (2.25) into (2.23) yields the
desired expression

E.E; ). (2.31)

EqE;y)

Ei2E6’2’)(A1 - EilEi'l’)‘

N-1 N-1
[H A,,]’ = JI [4.6) — EL.E..]  (2.32)
k=1 i1 (::})
for the diagonal elements.
For the nondiagonal elements, we have
N-1 N-1
l:kIIl Ak:l = IH (4.5 — ,E, r
= i’ =i+1
- EilEi'l'][H Ak] y (2.33)
k=1 if’
for ¢ > j, and
N-1 N=-1 N
|:kI_I1 Ak:l = zH [Az(l]) - EilEi't’
= i’ =j+1
- E,.,E,.q,][kH Ak] , (239
=1 if’
for ¢ < j. We prove by induction that
i i—1
[kI_Il A"}., = —E.E; kZ: [4:0)
B v (o)
- 2E"kE,"kl], fOI‘ i > j,
= [H A,,] , for ¢ <j. (2.35)
k=1 ii’
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For example, when 7j = 12 or 21, we have
[A2A1]21' = [(622' - EmEl'z')Al]zx'
= _P12E12E1'2'[A1]u' = _EZ’IEI‘Z'

and in the same way [A.4,];;» = —E.E,.,.. For
the general case with ¢ > j, we write

i i1 i—1
I:kI_I Ak:| l:(cn" - IZEHEI'W> H k]
=1 i ~1 k=1 i’
i1
'—PiiEjiEi’i’[H Ak]
k=1

i—

i1
- PuEuEri'I:H Ak] . (2.36)
k=1 1’

1
i

i’

[

3

( )

(The case 7 < j should be considered in parallel with
the case ¢ > j. However, we leave this to the reader
since the steps in both cases are essentially the same.)
We use (2.32) for the first term of (2.36) and (2.32),
(2.34), and the induction hypothesis (2.35) for the
second term. We then carry out the indicated trans-
positions to obtain

l:kI_I Ak] = —_EiiEi':" kII [Ak(j) - EikEJ"k’]
=1 ij’ =1

(ki)
i—1 i=1
+ ZEizEz'i' H [Am(l]) - EimEl’k’
=1 m=j+1
i—l
— BB )EE e I1 14D — 2E4E,; )
k=1
i—1 i=1
+ X BB ] [A.0) — EwEr
1=i+1 m=1+1

-1

— B En BB [ [4:(G) — 2E.E; ). (2.37)

=1

We note that the operators E,.,.. and E,, in this
expression operate on E;.,. and E;;, respectively,
and that

El’m’Ei’l’ = El’m’(Ei’l’

and

— Eyp) = By By

EimEu = E;.(E:; —
We may therefore replace the operators £;., and
E,. in (2.37) by E;.,.. and E,,. With this replace-
ment made, we note that the operators E,.. operate
on E;.;. and may be replaced E,.;.. Equation (2.37)
can therefore be written as

[fra], -

i—1
y
- Z EuEi'z'
=1

(I#3)

E.‘m) = EijEim-

i—1
—EuErw{H [4:(J) — Euk; ]
k=1

i—1

H (4.5 — 2E1‘kE1”k']}' (2.38)

k=1
(kl,7)
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The sum on / in (2.38) may be performed by the
method that was used to sum (2.28) and the result
is (2.35) which completes the induction. Equations
(2.33), (2.34), and (2.35) imply that

N-1
1]
k=1 ii’
N-1

= —EiiEi’i’ H [Ak(z]) - 2EﬂcEi'k’]
k=1
(k7))

(2.39)

which is the desired expression for the nondiagonal
elements.

We may now use (2.32) and (2.39) to evaluate
(2.22) which we write as

[IN]NN’ = S;v..](l/ st N - ll)

N—1 N-1 y-1
X {H A, — 2 E <PiNPi’N’EiNE1"N’[H Ak:l
k=1 i=1

k=1 [

N—1 N—1
+ Z PiNPi'N’EiNEi’N'[H Ak])} (2.40)
b R
Substituting (2.32) and (2.39) into a typical term
in the sum on ¢ in (2.40) and carrying out the
indicated transpositions yields

N—

1
2P,-NP5fAY'EiA'Ei’I\"[H Ak]

k=1

i’
N=1 N-1
+ 2 Z PiNPi’N’E:'NEi’N’ H 4,
i=1 k=1 ij’
(irti)
N-1

= 2Ey.En s H [Ak(i) - ENkEN'k‘]

k=1
(ki)

N-1

-2 Z Ly B ExEy
i=1
(5#1)

N—1

x ]I

k=1
(ki i)

Since this is to be symmetrized by S_,(1’-- - N—1'),
and 7’ and j/ do not occur in the product in the
second term, we may replace 2E,. ;. Ey.; by
1+ P;;)E; ; Ey.i = Ey. Ey .. Thus, (2.41) may
be written as

[4.(2)) — 2EmEx]. (2.41)

N-1

ENiEN’l" H [Ak(”’) —ENkEN'k’]
G
N-1
+ ENiEN'i’{ H [Ak(’l) - ENIcEIV’k’]
()
N-1 N-1
- Z EyvEx; H [A.(ig) — ZEN,CEN:,,,]}-
F=1 k=1

(i=1) (ksd,4)
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The terms in the curly brackets can be summed
by the methods that were used in Eq. (2.28), giving

N—1
EyiEyi kH [4:(3) — EmiEnr]
=1
N—-1

+ Ev.Eyvi ] [4:G) — 2EniEni]

k=1

for (2.41). Substituting this into (2.40), we have
[IN]NN' = Sz’v—1(1, e N — 1’)

N—-1 N-1 N-1
X {H Ak - ZEMEN';' H [Ak(i) - ENIcEN'k’]
i
N-1 N-1
- _Z;EN.-EN,,:, kIII [A4.() — 2EMEN,,,,]}-
k

#i)
The two sums on 7 may be done by using the methods
of Eq. (2.28), with the result that

Inlyn = S;’V_l(].’ oo N — 1/)

~
¢z + 2E?2 - 2 EEHE;‘::
i=3

_'2Ef2

OF PAIRING-FORCE HAMILTONIAN. II

N
6y + zEfz -2 ZEmEn
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N-1
X H [Ar — 2ExiExv], (2.42)
k=1

which is the desired expression for the coefficient
of CNN' in IN.

If we compare (2.42) with (2.14) and (2.15), we
see that our hypothesis, that the coefficient of cyx-
in Iy is just Iy_,(1 --- N — 1) in which ¢,;- has
been replaced by ¢;;. — 2E.vE,.x+, is proven. Eq.
(2.42) may be used recursively, starting with the
initial value of I, given by (2.19), to prove the
general form of Iy given by (2.21) if at each recursion
we take into account the symmetry of Iy.

We finally prove that it is only the identity
permutation in the Sy of (2.21) that contributes
to Iy. For, consider a permutation of S which inter-
changes 1’ and 2’. After applying this permutation
and equating the primed indices with the unprimed
ones we get, for the top two rows of the resulting
determinant,

- 2E?2 2E1NE21\'

2E,vE, y.

i=3

After substituting (2.16) for ¢,, and ¢,;, we see that the elements of these two rows are equal and therefore
the corresponding contribution to Iy is zero. The same results are obtained for all the permutations of S%
that are not equal to the identity. We therefore have the determinental form

6, — 2 Z, E?1 2K, 2Ky ‘
Iy = 2K, 6 — 2 D B 2E:y (2.43)
2E§/1 Cy ™ 2 E, E,zfv

for Iy. Then, by (2.7), the normalization coefficient
is given by the square root of the reciprocal of (2.43).

IV. THE OCCUPATION PROBABILITY

In this section, we will derive a simple expression
for the ocecupation probability,’

N, = (¢ N, |¥)

=N ZN 6(1 --- N¢*(L -+ N), (3.1
s

for the levels of the single-particle well. We will

use the notation of Sec. IT and our methods will

be very similar to those used in that section. The

result that we will derive is that N, is C® times a

sum of N terms. The mth term in this sum is a

determinant which can be obtained from I, (2.43),
by replacing the mth column in (2.43) by (2¢,—E,.) °.
When we combine this with the expression for C?,
derived in Sec. II, we obtain

N
Nl = 204(251 - Ei)_zy

=1

3.2)

where the a,’s satisfy
(61 -2 Z’ E?l)al + 2Efza2 R 2E?NCYN = 1,
2820 + (62 — 2 D E)ay + -+ + 2Eivay = 1,

2B + - (ov — 2 Z, E?N)azv =1. 3.3)

Our proof is along lines similar to those used in the
preceding section for the normalization coefficient.
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We first derive an operator-product expression for
N, that is similar to (2.15). Then, after considering
the special case with N = 2, we derive a recursion
relation for these operator products that can be used
to prove the above result.

We derive the operator-product form of N, from
(3.1) after substitution of (2.1), i.e., from

Ny = NQN)'C*8x8% > 6(1 --- N)
2+ N

N
X Il 2 — E)'Qe, — E;)Y. (34)
i=1

Since f; is not summed in (3.4), the symmetrizer
Sw should be written as

N
Sy = X PuSy.(2 -+ N),
i=1

where Sy_,(2 -+ N) is the symmetrizer operating
on the indices 2 --- N and may be replaced by
(¥ — 1)\ Making this replacement and performing
the sums on 2 --- N in the same way that (2.6)
was summed, we have

N N
N, = C* X P,.S; p Ai(2e, ~ E)7!
=1 =2

X (251 - El’)-is <3-5)

where the operators A, have been defined in Eq.
(2.14). The remainder of this section is devoted to
a discussion of this operator product.

As a simple example of Eq. (3.5), let us consider
the case for which N = 2. We then have

Ny = 02(1 + Pm)Sé(Cz?' - EwEJ'Z’)

1 2B, K, o
Copr — 2 Z’ EE; 0,

Illn(IV) = 'Q-,(z' e ]V,) 1

1 2EyEy s

The other I,;.(N) can be obtained from I,,.(N) by
symmetry considerations. Our recursion relation is
based upon the observation that if we expand the
determinant in (3.9) by the minors of the first row
then the first term is Iy ;(2 --+ N) in which ¢;;-
has been replaced by ¢;;» — 2E.F,.;- and the re-
maining terms can be written in terms of 7,;. (N —1).
To make this more explicit, we introduce the notation

I;N;1.-- N)=1I..(N), (3.10)

ie, I;(N; 1 --- N) is the coeflicient I,,.(N) in
the expansion (3.8) in which there are N pair

R. W, RICHARDSON

X (26, — E) (26 — Ey)™
= C(1 + Po)(1 + Pyy) ey — 4E0E, )
X (26 — E) N2 — )™
il 2B oo
1 6y — 2E,E,.,
X (26 — E)'Qa — E)™. (3.6

Carrying out the indicated transpositions and using

= CQ@ + Pw)u + Pvz*)

€1z = €, = —4E?%, we have
I oF? ,
N, = cﬂt Lo 2B o gy
1 ¢ — 2E%
_ 2 | 1
b2 g EQ)ZJ 37
| 28, 1

which is in accord with (3.2) when we substitute
(2.20) for C™* We will show that the natural gen-
eralization of (3.7) holds for arbitrary N.

We now turn to the derivation of a recursion
relation for operator products such as (3.5) that is
similar to the one, (2.42), we derived in our cal-
culation of the normalization coefficient. We start
by writing the operator product that appears in N, as

N N
> PS8k [T 4.2 — A) 26 — B!
i=1 k=2

N
= Z Iii'(N)(Qéx - Ei)—l(Qex - E;")—l»

t.i=1

3.8)

The hypothesis we wish to prove is that I,;. ()
is given by a determinant that is a natural generaliza-
tion of (3.6), e.g.,

21E1N1§1ry¢ i

2E;5Ey v 3.9)

Cwy: — 2 Z, EivE;.y

energies E; which are labeled by the indices I -+« N.
Our hypothesis is that 7,,.(N; 1 --- N) is given
by (3.9). Expanding (3.9) by the minors of the first
row, we see that our hypothesis implies that

Iu'(N;I MR IV) == j}\!—l(2 b N}
N
-2 > P, E.E,..I,(N—1;2..-N), (3.11)
,7=2

where the bar means that c¢;;- has been replaced
by ¢.;o — 2EE, ... Conversely, if we can prove
(8.11) then, starting with (3.6), we can prove our
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hypothesis (3.9). We now turn to the proof of (3.11).
The first step in the proof of (3.11) is an expansion
of the product

N
H Ah(2€1 - E:)_](Qfl - El')—1
k=2

appearing in (3.8). Let us define T.;.(¥) by

N
II 4:@2e — E)'(2e, — E, )
k=2

N

= 2 T (N)2a — B2 ~ E;)7"

i,i=1

(3.12)
From this definition, we have

2 T (N) 26 — E)7'(2e, — E;)7

¥, 5=l

= Ay E TN — 1)(2 — E) (2 — E; )"

i.9=1

from which we ean derive the recursion relations

T";I(N) = [AN(i) b E;’NEi’N’]TU'(N - 1)! (3']38’)
T-‘i'(N) = [AN(’L]) - EiA'Ei’N’
- E’:‘NE:"N']Tf:"(N - 1), (3.13b)
TIN (N) il\EN i P: ‘N* Tn (N - 1)
N—1
— 2, BBy Py TN — 1), (3.13¢)
(&;ei')
TN:"(N) = _E\’fEi'N’PiNTH‘(N - 1)
N—-1
Z ExiByyPixTe; (N — 1), (3.13d)
k ; i)
Ty (N)
N=1

= - Z BB PPy T (N — 1),  (3.13¢)

for ¢ # jand 7, § < N. These recursion relations
are to be solved subject to the initial condition
T,,(1) = 1. (3.14)

It is easily verified that the solution of Eqs. (3.13)
that satisfies (3.14) is

~
Tn'(N) = A {Ak(l) - ExkEx'k']s (3-15)
=2
T:‘(N) = _EliEl’i’
N
X I1 [4:(10) — 2E.E..),  (3.16)

kw2
{kpei}
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Tn'(N) = —'EliEi'l'

N
X H [Ak(lj) - ZEikEf'k‘]y
s
~E, By
N

X H [Ak(h’:) - 2EikE1'N'],
k=2
(k71i)

(3.17)

Tu’(N) =

(3.18)

and

T”,(]V) = 2E,~1E;'§'E{iEi'i'

N

x II
k=2
(ks$i,7)

for N > 1,7 5 j,and 1 < 7, j < N. This completes
the expansion of the operator produet

[4.(14)) — 3EnE; ],  (3.19)

N
kl’:[2 Ak(zfl - El)-l(Zfl - E1')'1~
We next derive an expression for I,,.(N). From
(3.8) and (3.12), we have
Z Iu'(N)(Qfx e Ei)_](Q‘—‘l - E:")—l

AZ ‘SV Z Tn (N)(QGI - E) (251 - E:)—l

In this expression, we write

b= 8%s(2 -+ N) 2 Pro

and pick out the coefficient of (2¢; — E,) "(2¢, —
E,.)7 to get

1. (N) = 8@ --- N

{Z PPy T (N)}

ii=1

(3.20)

We now use (3.14)-(3.19) for 7;;.(N), carry out the
indicated transpositions, and partially perform the
sums on ¢ and j [using the same techniques that
were used to sum (2.28)] to obtain

In'(N) = va~1(2, N’){ﬁ [Ak(l) - 2E]kEl’k']

N

II [4.(1%) — 3E.E,...
)

N
-2 ZEliEl':" ]} (321)

which is the desired expression for I,,.(N).

As our next step, we derive an equivalent expres-
sion for the part of (3.21) that is inside the curly
brackets. It will be equivalent to (3.21) in the sense
that the two expressions will only differ by terms
which vanish on symmetrization by S;.,. In order
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to do this, we write (3.21) as
I,(N) = 8%-:(2' -« N)J,..(N;1 --- N),

where

(3.22)

Ju(N;1--- N) = INI A1)

N
-2 Z Eh‘El’i’

1=2

N

kHz [A,(13) — EuE ], (3.23)
(ki)
The bar notation has been defined in Eq. (3.11).
It is clear that the first term of (3.23) contributes
the first term, Iy_,(2 - - - N), of (3.11). We therefore
concentrate on the second term of (3.23) and we
will show that

J(N;1-.-N) = kH2 A1)

~
-2 ZEliEl’i’jii’(N —1;2---N)

=2

(3.24)

plus terms that vanish after symmetrization by Sj._,
and therefore do not contribute to I,;..

We begin our proof of Eq. (3.24) by writing (3.23)
as

Jiu(N;1--- N) = INI Y He))

N
— 2 ZP2iP2’i’E]2E1'2’KN(12; 3. N)’

(3.25)
t=2
where
N
KN(12; 3. N) = kII [Ak(lz) — EnEy ] (3-26)
=3

and writing (3.24) as
N N
Ji@N;1 - N) = kH A1) — 2 X PoPy.
=2 =2

X E]2E1'2'j22'(N - 1; 2 e N)- (3.27)

We will then prove the equivalence of (3.25) and
(3.27). This equivalence is proven by first deriving
expressions for Ky and J,,- and then showing that
the difference between (3.25) and (3.27) vanishes
when it is symmetrized by S4_,.

An expression for Ky may be derived by writing
Eq. (3.26) as

Kv(12;3 -+ N)
= [Ax(12) — E\wEyw]Ky-(12;3 -+ N — 1)

and iterating this equation. In this way we obtain

N
Ky(12;3 --- N) = ] 4.(12)

R. W. RICHARDSON

N
II 4.2
<'£;?)

+ 2 Z EllEl’l'ElmEl’m’

i<m

N
- ZEUEI'V
1=3

x II A.q2im) — ---

(k=2l,m)
N
+ ()N = 2 [T EwEir.  (3.28)
k=3

We may obtain a similar expression for J,. by
using (3.24) to write it as

N
Joo(N —1;2--- N) = kIIa [A:,(12) — 2EE,.,/]

N N
-2 Z H [1‘{,(12) - 2E2IE2'1']E2€E2':"

im3 l=i+l

-

1
X 1] [A:(12) — 3E,.E.-+.]

k=3

= [AN(lz) - 2E2NE2'N’]j22'(N —-2;2---N—-1)
N-1
— 2E 5B,y kII [4.(12) — 3EuE;].
=3

Solving this for J,, (N — 1;2 --- N), we have
Joao(N —1;2--- N)

N N N
= H Ak(12) — 4 ZEzthlz' H Ak(12l)
)
+ 18 ZEZ’IE?'t'Eszz'm' fi,,(lZlm)
f<m k1, m)

— e+ ()W - DWWV = ! ﬁEzkEzrk'.
(3.29)

Equations (3.28) and (3.29) are the expressions for
Ky and J,,- that may be used to prove the equiv-
alence of (3.23) and (3.24).

We now use the results of the preceding para-
graph to prove that the difference between (3.23)
and (3.24) gives a zero contribution to I,,.(N), i.e.,
that

N
SI’V—I(2’ T N') kz_: P2kP2’k’E12E1’2'
X {Ky(12;3 -+ N)
- jzz'(N - 1;2 N)} = 0.
From (3.28) and (3.29), we have
Ky(12;3 -+ N) — Jp (N — 1;2 --- N)

(3.30)

N N
= Y (4EwE,.,. — E\E,.,) k113 A.(120)
=3 =

k1)
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-2 Z (gEzzEz't'Eszz'm' - EllEl'l‘ElmEl'm’)

i<m

x II

(k»l,m)

N N
X [(N - 1)2 HE2kE2'k’ - HElkEl’k’]’ (3.31)
k=3 k=3

Consider the contribution to (3.30) of the last term
in (3.31). It is proportional to

A.(12lm) + -+ — (=)"WN — 2!

N
N’) Z P2iP2'i'E12El‘2'

i=m2

N
X [(N — 1) [] BuBor —
k=3

which, on taking advantage of the symmetries of
the expression, can be written as

(N — DN — 2)!
[(E P, HEz,,Elz) ﬁE;]-

i=2

Shoy(2 -

N
H ElkEl'k':l *

k=3

(3.32)

We have dropped the primes since the argument
is valid with or without them. We show that (3.32)
vanishes by defining

E P2s H E2kEl2

i=2

and proving by induction that

N
Xy = HElk- (3.33)
k=2
For example, for N = 3, we have
= (1 + Pza)Estm = Eza(Ew - E13)
= E12E13. (3.34)
For arbitrary N, we have, using E.y — Ey =
EINE2N/E12)
lNEZN
XN= ZP21(E1N+ )
N-—
X H EzkElz -+ P?N H E2lcE12
k=3
N—1
= Ey Z P21 HE2kE12
N
+E1N ZPm HEzk - kIIENk
t=2 =1
N-~-1
= E\xnXyoy — ExnPinXna — HENk- (335)
k=1

Substituting the induction hypothesis (3.33) for Xy_,
in (3.35) proves that (3.33) is true for X and there-
fore the induction is complete. Substitution of (3.33)
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into (3.32) indicates that the contribution of the
last term of (3.31) to (3.30) is zero. Similar arguments
can be made to show that the other terms of (3.31)
give a zero contribution to (3.30). Thus the equiv-
alence of (3.23) and (3.24) has been demonstrated.

Equations (3.22) and (3.24) may now be used to
prove our recursion relation (3.11). For, on sub-
stituting (3.24) into (3.22), we have

Lo@V51 - N) = Sho(2 -+ N){n L)

N
- 2 ZEliEl’i‘jii’(N - 1; 2 R N)}' (3-36)
=2

If we write

Sh_i(2' --- N

N
= > Poi8Shp(2 i — 1, i+ 1 --- N)
j=2
and again use (3.22) in the second term of (3.36),
then we can write it as
I, (N;1---N)

N
= Sy_.(2" --- N) kII? 4,(1)

N
-2 XY P ELE. I (N —1;2 -
$,i=2
As has already been noted, the first term in (3.37)
is Iy_,(2 --- N). With this identification, we see
that Eq. (3.11) has been proven and this equation
can then be used to verify (3.9).

There remain two things to prove before we can
complete the derivation of Eq. (3.2). We must first
prove that it is only the identity permutation in
the S;_, of (3.9) that contributes to I,,.(N). Then,
we must prove that 7,;. is diagonal in ¢ and j. These
are both proven by the same methods that were
used to prove that it was only the identity permuta-
tion in S, which contributed to the normalization
and we refer the reader to the end of See. II for
the proof. For future reference, it should be noted
that it is only at this stage of the proof that the
specific properties of ¢;;. are used.

We conclude this section with a few parenthetical
remarks on the form of N,. If we differentiate
Eqgs. (1.8) with respect to g, we get the system of
equations

-2z ]G

for the derivatives dE,/dg of the pair energies. Com-
paring (3.38) with (3.3), we see that

a; = —g’dE,/dg.

N). (3.37)

2 dE _1
17 d 92

(3.38)

(3.39)
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Substituting this into (3.2), we get

- _ zi(” _1_)
N!_ gdg E2ef—E,

i=1

(3.40)

In this form it is easy to prove that
E N;,=N
f

since

1 N
L XG B "

It should also be noted that (3.40) is exactly the
same expression one would get if the Pauli principle
were neglected and one considered a system of
bosons in a one-body potential described by the
Hamiltonian (1.1) with no Pauli principle.

V. THE EXPECTATION VALUE OF b}b,.

Let us define the expectation value
BAY) = (| bibs. [¥).

It is essential for the evaluation of the expectation
values of one- and two-body operators. For, within
the framework of the seniority-zero states of the
pairing-force Hamiltonian, we have

(¥l ar,ar0 |¥) = 8..-B(AL)
and, for 1 = 1/,

.1

(4.2)

(')b] arna;v,afn’al'n' ‘l’)
= (6nn’5nh’ - 611%'5-7:'7:')51251’2’3(11,)'
Since B(11) = N,, it is suggested that, in some
kind of approximation, an expression for B(11'),
for 1 5= 1’, can be obtained by replacing (2¢, — E,)~*
in (4.2) by (2e;, — E,)7'(2¢,r — E)7Y e,

N

(4.3)

BU1) == > a2 — E) 2. — E)'.  (4.4)
i=1
In this section, we show that
N
BAV) = > ;(11)(2e, — E)'2e; — E)™, (4.5)

i=1

where, in an approximation to be described below,
a;(11') =2 a,. The derivation of (4.5) closely follows
the one given for N, in Sec. III. We first derive
an operator-product expression for B(11’) and then
show that it is formally the same as the one that
we derived for N,, (3.5), with a modified definition
of the ¢,;’s. We therefore can take over all the results
of Sec. III that do not depend upon the particular
form of the ¢;;’s. In particular, we obtain a result

R. W. RICHARDSON

that is similar to (3.9). However, due to the modi-
fication of the ¢,;’s, all permutations in S5_, will
contribute to B. If we ignore this modification, we
obtain the approximation (4.4) and, if we retain it,
we obtain the exact expression (4.5). We conclude
this section by calculating the expectation value of
the Hamiltonian, using the approximation (4.4).
Here, we are able to give an explicit expression for
the errors made by the approximation. Throughout
this section, we assume that 1 = 1’

We derive an operator expression for B(11’) by
starting with

BAl) = N 2, 412 --- N)y(I’2 -+ N)
o
which on substitution of (1.5) and (2.1), becomes
N
B11") = 02(2 Pl,.)s;, > 612 --- N)
i=1 2-4-N
N
x I1a = 6:0Qe — E)' e — Ey)™
k=2

N
X H (2€i - Ei)_l(2€; - Ei’)_ly

i=2

(4.6)

where we have replaced Sy by

(N — 1)! iP”,

i=1
as we did in Eq. (3.4), and we have used
912 --- N)O(1'2 - -- N)

= 6(12 --- N) f[ (1 — 8,4). (4.7)

We next use the recursion relation for the #-func-
tions (2.5) to write (4.7) as

6(12 --- N) I_NI(l — &) = 012 --- N ~ 1)
X II - al'k)[l - Z am}(l — bu)
=612 --- N — 1)ﬁ(1 — bu)

N-1
X |:1 — &y — Oy — Z 6!1\’] ,
2

where, in multiplying the last two factors, we have
neglected the term 8,58, » because we have assumed
1 # 1’ and we have neglected the terms

N-1
Siow D i
1=2

because they do not contribute to (4.6). Substituting

4.8)
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(4.8) into (4.6) and performing the sum on N, as
we did in Eq. (2.8), we obtain

N
B(ll’) = C* ZPIiSA,’[CNN’ - (261 - EN)_l

X (261 - ENV)—I - (2611 bl EN)_](QGI' - EN'>_1
N-—-1
-5 Bt |

1

> 61 ---N—=1)

2ereNe—

N-1
X H (1 - 5]!];)(261 - E])_1(251l - Elf)_l

k=2

N-1
X H (26; - E,‘)_l(2€,' - E,‘l)_l.

=2

4.9

Equation (4.9) may be iterated to obtain an op-
erator-product expression for B(11’). Before doing
so we note that the sum on I in (4.9) does not
include the term with [ = 1. In order to make the
resulting operator product as much like the one
derived for N,, (3.5), as is possible, we include the
term with I = 1 by adding and subtracting BwByy
to the operator in (4.9). We next note that the
operator B yE, » which we have added to (4.9)
operates on (2¢;, — E,)"'(2¢;. — E;.)”" and that

EIINEI’N'(2€1 — El)-l(2€1: - _E'l,)"1
= (2¢ — E)7'(2¢ — Ey)"
X Qer — Ey)7 (2 — Ex)7

Thus, this operator may be replaced by (2¢;, —
Ey)"'(2e;r — Ey.)”'. We may therefore write the
operator in the square brackets of (4.9) as [Axy +
Uny-(117)], where we define Uyy- by
Unw(11) = (2 — EN)_I(251' - EN’)_l

- (26, — E) 726, — Ey)"

- (261' - EN)—.I(QGI' - EN')—l (4.10)
and Ay has been defined by (2.14). Making these

modifications in (4.9) and then iterating it, we obtain
the expression

N
B(11") = C* 3PSk

i=1

X (26 — E)7' (e — E)

II [4s + U1

(4.11)

which is the desired operator form of B.
Equation (4.11) is identical to Eq. (3.5) except
for the replacement of one ¢ by €. and Cy by

Cir-(117), where
Clck’(ll/) = Cu + Ukk'(lll). (4.12)

In order to avoid possible confusion at this point,

OF PAIRING-FORCE HAMILTONIAN. II

1047

we emphasize that in (4.12) 1 and 1’ represent the
variables f, and f/, and k and &’ represent the indices
p. and p.. We may now take over the results of
See. IV that do not depend upon the explicit form
of C. That is, by analogy with (3.8), we may write
B(11’) as

Bl = €* 3 L,;(11)

X (2 — Ei)_1(2€1' - Ei')_lp (4-13)

where, from (3.9), I,;-(11’) is a symmetrizer times
a determinant, e.g.,

1 (1) = 82 -+ N')
1 2Elerz' e 2E1NE1’N’
X 1 ngv(lll) -— 2 Z, E,‘zE,"gf AR 2E2NE2/N/ .

1 2EN2EN'2' ces cNN’(ll,) - 2 Z’ EiNEi'N'
(4.14)

There are two sources of difficulty that appear
when one tries to use (4.14). The first source is that
1,;.(11") is no longer diagonal in 7 and j and all
N? terms in (4.13) contribute to B. Secondly, and
more seriously, all (N — 1)! permutations in S}_,
contribute to (4.19). An approximation which re-
moves these difficulties is immediately suggested and
is to ignore the U,,.’s in (4.14). This is the approx-
imation that leads to (4.4) and it can be thought
of as a zeroth-order approximation in the U’s.
Possibly a better approximation which also solves
these difficulties is to ignore the U,;’s for 7 # j.
This would lead to an expression similar to (4.5)
in which «,(11’) is obtained by writing «; as a ratio
of two determinants and then replacing c¢; in the
numerator by ¢;(11') = ¢; + U.;(11’). Still other
approximations might be developed by retaining only
those U,;’s that make a significant eontribution to
the quantity being calculated. However, these would
depend upon the particular system being considered.
In this paper, we only briefly consider the first of
the above approximations.

As a test of the approximation (4.4), we use it
to calculate the expectation value of the Hamil-
tonian. While this test will not indicate the errors
of this approximation which have a fluctuating sign,
it will indicate any tendency of (4.4) to over or
under estimate B. Also, this test has the advantage
that the error can be written out explicitly. We
start by using (1.1), (3.1), and (4.1) to write the
expectation value of the Hamiltonian as

(Y| H [¥) = Z 26N, — ¢ “23(11'). (4.15)
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We may use (1.8), (2.3), and (3.2) to write the first
term of (4.15) as

2,
ZZQN, = Za, ZW(ZQ 7

(4.16)
= z o g: + Eici]‘
The second term of (4.15) can be written as
—g L B() = —g X agi®, (417
i35 i

where we have used (1.6) and (4.4), Combining these
results, we have

WHW =X ~ /9.

If we multiply the ¢th equation of (3.3) by E, and
then sum on 7, we get

2aBe = 2 E +2 3 aky

for the first term of (4.18). Substituting this into
(4.18), using the explicit form (1.10) of ¢;%, and
noting that Y_; E, is the exact energy of the state,
we obtain the expression

s 5al1- ()]

for the error in (4.18). This may be easily evaluated
when the E/'s are determined.

a[Ee + g(g 4.18)

4.19)

V. REMOVAL OF THE RESTRICTIONS
ON THE EQUATIONS*

We now consider the nature of the restrictions
(1.12) on the solutions of Egs. (1.8). In order to
simplify the notation, we will write E, for E,,. There-
fore, Eqgs. (1.8) and (1.10) become

and

.= 2 + 2 Z .
i=1 )
We discuss the restrictions by deriving conditions
that must be satisfied if the restrictions are to be
violated. That is, we will first assume that K of
the pair energies E; are equal and therefore violate
the restrictions. We then derive certain conditions
that must be fulfilled if this assumption is to be
consistent with Egs. (5.1). These conditions are:
(1) The value of the K equal pair energies must
be equal to one of the values of 2¢, appearing in the
definition (1.9) of F(E). We will call this value 2¢,.

4 R. W. Richardson, Bull. Am. Phys. Soc. 9, 75 (1964).

(5.2)
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{(2) The pair degeneracy @, of the level whose energy
is & must be K — 1. (The pair degeneracy of a
level is defined to be one-half the total degeneracy,
e.g., in the spherical-shell model of the nucleus, the
pair degeneracy of a level jis § 4+ %) (3) If one
assumes that K of the pair energies are almost, but
not quite, equal and retains terms that are first
order in the differences 2¢, — FE,, then these dif-
ferences are proportional to the K Kth roots of one.
(4) The interaction strength g must be a root of a
Kth-degree algebraic equation.

This last condition is the most important. For,
it implies that there are no more than K different
values of the interaction strength at which K of
the pair energies ean be equal. Thus, if we take all
the values of K, K < N, that are consistent with
condition (2), then we obtain a finite set of values
of g at which the restrictions can be violated for
a finite system. This set contains values of g that
correspond to excited, seniority-zero states as well
as the ground state and the interpretation of any
particular value of g in this set must follow from
a detailed investigation of Egs. (5.1). However, the
values of ¢ at which the restrictions can be violated
for a given state of the system are contained in this
set and are therefore finite in number. The energy
and wavefunction of a state at one of these values
of g may be obtained by a limiting procedure similar
to that described in this section. In this way, the
energy and wavefunction of a state may be obtained
for all values of g and the restrictions removed.

The derivation of the above conditions might
proceed by first assuming that the K pair energies,
E, --« E,, are almost equal and that they have
power series expansions in some small parameter A
which, at the end of the calculation, is to be set
equal to zero. These expansions would then be sub-
stituted into (5.1) and the coefficients of like powers
of A equated. However, if one carries out this
program, one obtains an indeterminate system of
equations, with more unknowns than equations, for
the expansion coefficients. We circumvent this dif-
ficulty by first introducing a new set of unknowns
defined by

- > @)

iml

(5.3)

where we have assumed that the energy scale has
been adjusted so that ¢ = 0. We then obtained
set of equations for these new unknowns by taking
the ¢th equation of (5.1) and multiplying it by
(E) n = 0 --- K, and then summing on ¢ from
1 {0 K. One can then show that each of the variables
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(5.3) is of order A® and that it is only necessary
to consider the lowest-order term in each of the
equations in order to derive the four conditions
given above.

The derivation proceeds by first considering the
case K = N when all the pair energies are equal.
We then generalize the results to include the cases
K < N. Throughout the derivation we assume that
g # 0. We now turn to the derivation of these
four conditions for K = N.

The first point that we prove is that if £, -+ Eg
are equal, then their value must be equal to 2¢, for
some values of f. This is done by showing that
E, --. Eg equal but not equal to some 2¢, is in-
consistent with Egs. (5.1). For, if we adjust the
energy scale so that the value E, - -- Ex have when
they are equal is zero and expand in powers of A
then the E, are of order A and, if ¢ # 0 for all
f, F(E;) is of order one. Since we have assumed
that g = 0, the ¢g;* are of order 1/A and, to this
order, are given by

2§(E_E) i=1---K.

Equations. (2.1), to order 1/A, are then given by

2 Z @5
Multiplying these equations by E.; and summing on
¢ yields K(K — 1) = 0. However, since K > 2,
this is inconsistent and therefore ¢, = 0 for some
value of f. In what follows, we assume that this is
so and we denote the pair degeneracy of this level
by Q.

We now prove our second point which is Q, =
K — 1. This is proven by repeating the above
argument with the one modification that, to order
1/A,

= 0, i=1---K. 5.9

F(E,) = Q,/(—E,).
Thus, Eqs. (5.4) become

2 E @5

i=1

= Q/(-E), i=1---K. (5.5)
Multlplylng (5.5) by E; and summing on 7, we get
K(K — 1) = KQ,, which proves our point.

In what follows, we assume that the first two
conditions are satisfied, i.e., ¢, = 0,and @, = K — 1.
We can- therefore write

F(E) = (K — 1)/(-E) + F(B),

where F(E) has a power series expansion which is
valid in some finite domain about £ = 0. We write

(5.6)
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this power series expansion as

): F.E'.

Our third and fourth points are that, to lowest
order in A, the E; are proportional to the K Kth
roots of one and that g must satisfy a Kth-degree
equation. These are proven by considering the new
set of equations which is obtained from (5.1) by
multiplying the #th equation of (5.1) by (Z.),
n = 0 --- K, and summing on 7, ie., the set of
equations

K K
L Eyt = 2 EFE), n

=1 i=1

Fy) = (6.7

It

0---K, 5.8

to lowest order in A.
We first write Egs. (5.8) in terms of the §; defined

by (5.3). The left-hand side of (5.8), for n = 0, is
I , 1 K
AR WA E DN e R
and, forn = 1, it is
S Eg' =8¢ —KEK-1. (510

For n > 1, we write the left-hand side of (5.8) as |
_ - B
1 n 1 2 [
ZE"I{J.' ZE‘Q +2,ZE~—E.«
Yl —_— ETI
E E’ — K,
oy S e,
.7 1=0
where we have used

n—1
Ty =y LAY

H

(5.11)

I

Using (5.3), we can write

Z, E?—l—ZE:’ = 87&-1—181 - 8n'-l
i.d

and, noting that §, =

DBy =

K, we can then write (5.11) as
T — (2K — m)&,,

n—2

- Z En-1-16;.
i=1

We may use (5.3), (5.6), and (5.7) to write the
right-hand side of Eq. (5.8) as

2 EFE) = —(K — D&, + 2 Figin

(5.12)

(5.13)
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Thus, Eqs. (5.8) may be rewritten as

K/g=~K — )8, + D2 F&, (5.14a)

&/g = 2 Fi8.1, (5.14b)
i

n—2
gn/g - (K -n + l)gn—l - Z: 8ﬂ—-l--mgm

m=1
= Z F181+1n
13

This completes the change of variables from the
E/s to the &/s. Equations. (5.14) are valid as long
as all the E/’s are within the domain of convergence
of the power series expansion (5.7).

We next consider the order of the &/’s with an
eye towards linearizing (5.14c). We show that §,,
for I > 0, is at least of order A, This is best treated
by the discussion of a simple example. We therefore
consider the case for which K = 3. In this case,
Eq. (5.14¢), for n = 2 and 3, becomes

gg/g—281=F082+F183+"', (515)
8/g — & — & = Fo8s + -+~ (5.16)

From (5.3), we know that if E, is of order A, then
&; is at least of order A’. This plus (5.15) implies
that & must be at least of order A® which when
substituted into (5.16) implies that &, is at least
of order A®. Returning to (5.15), we see that if &,
is at least of order A% then so is &,. This line of
reasoning terminates at this point because the co-
efficient of &,_; in (5.14¢), for n = 4, vanishes. This
result may be easily generalized to arbitrary K
where &, --- &g are all at least of order K. We
therefore assume that &, -+ & are all of order A¥.
This allows us to neglect the terms in (5.14a) with
1 > 0, the terms in (5.14b) with I > K — 1, the
terms with | > K — =, and the nonlinear terms
in (5.14¢c). We may also ignore Eqs. (5.14¢) when
n > K. Equations (5.14) therefore become

KG = _(K - 1)8—17

n > 1. (5.14¢)

(5.17a)

K-1
G& = ZF181+1y
i=1

K-~n

Ge, — (K —n+ )8y = 2, Fi& .,
=1

(5.17b)

n=2--K, (5170

where we have defined
G=g¢g'~—F,

and have used & = K.
We already have sufficient information to prove
our third point that the E.s are proprotional to

(5.18)

R. W. RICHARDSON

the K Kth roots of one. For, if we form the poly-
nomial

K
P(z) = Hl (x — E),
then, by definition, the pair energies are the roots
of the equation P(z) = 0. If we write P(z) as

P(z) = ZK: a.z"

(5.19)

n=0
then @ = 1 and a,, for n > 0, may be formed
from combinations of the &/s, e.g., a; = & and

a, = (& — &,). Therefore a,, for n > 0, is of
order A®. Since z is of order A, the orders of the
terms in (5.19) are A%, for n = 0 and K, and A**7*,
forn = 1 ..- K — 1. Therefore, to lowest order
in A, P(z) = 2 + ax and the pair energies are
roots of the equation
25+ ax =0

which proves our assertion.

Returning to Egs. (5.17), we note that we have
K + 1 equations in the K + 2 unknowns @, &_,,
& -+ 8x. We therefore need to derive one more
equation before they can be solved. We can, in fact,
derive two more equations and this will provide a
check on the consistency of our arguments. These
equations have their origin in our third point above.
For, if we write

E, =bA+ ;A" + -,

then we know from above that (,) = 1 when the
expansion parameter A is appropriately defined. We
therefore have immediately that & = KA, to
lowest order in A. We can also derive a relation
between &_; and &g_;. For, from its definition

8y = 2, (A +oa® + )

— — Z %% + ...
since 3 b;' = 0. Also, from its definition,
81 Z (biA -+ C.‘Az + - ')K_‘

(K — 1)(Z%>AK+ -

i

I

I

Comparing these two results, we have
Exoy = —(K — 1)8_ A% + -+,
We now write
& =KAA + -, n=1-K,
and combine the above results with Egs. (5.17) to
obtain the X equations

G = Ag., (5.20a)
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K-2
GAx - E FzAzn = FK—I, (5-2Ob)
1=1

K—-n—1

—(K—-—n+1D4.., + GA, — Z F.A,..
-1

= Fgen, n=2..-.K~—1, (5.20¢)

for the K unknowns @, A, --+ Ag_,. Equation
(5.17¢), with n = K, reproduces Eq. (5.20a) and
serves as a useful check on the consistency of the
above scheme,

Our fourth point, that ¢ satisfies a Kth degree
equation, is proven by noting that (5.20b, ¢) may
be solved for Ax_, and that the result is a poly-
nomial in G of degree K — 2 divided by a poly-
nomial in G of degree K — 1. When this expression
for Ax_, is substituted into Eq. (5.20a), we have a
Kth-degree equation in G which then determines
the interaction strength through (5.18). For ex-
ample, for K = 2 and 3, we have the equations

G —F, =0
and
G* — 3F,G + 2F, = 0
for G.

The above results may be easily generalized to
include the case for which K < N. In this case
we denote the K equal pair energies by E, --- Ex
and adjust the energy scale so that their value is
zero. The remaining pair energies Ex,; -+ Ey are
distinct and not equal to zero. We split Eqgs. (5.1)
into two sets: those for which ¢ = 1 .. K and
those for which ¢ = K + 1 --. N. For the first
set we write

K

g i (Ei - Ei)
N ] . )
+2i=§1;+1 (E; — E)’ t=1--K, (21
and for the second set
1 1 2K N 1
T =ot g t2 2 gy
9: g —F, + ,-:ZK:H (E, — E))
i=K+1--N. (522

The corrections to (5.22) are of order A® since they
are of the form

> &ET

=1

Therefore, the corrections to E;, ¢ = K + 1 --- N,
are of order A® and can be ignored in (5.21). The
second sum in (5.21) can therefore be transposed
to the left-hand side of Eqs. (5.1) and included in
a modified definition of F(E). The quantities
Fo ++- Fr_, will now depend upon Ex,, --- Ej.
These remaining pair energies are determined by
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Eqgs. (2.1) with 1/g, given by (5.22). Thus, the only
difference between this case and the previous case
with K = N is a modification of the definitions
of the quantities Fy < -+ Fg_,.

The highly unlikely case of two or more groups
of pair energies being equal but with members of
different groups being unequal may also be treated
by a simple generalization of the above.

Thus, we have shown that the restrictions on the
solution of Egs. (5.1) can only be violated for a
discrete set of values of the interaction strength.
However, these violations are of no consequence
since the wavefunction and energy can be obtained
for these values of the interaction strength by re-
quiring them to be continuous functions of g. Also,
since we have chosen to label the states of the Hamil-
tonian in the same way that the states of the non-
Interacting system are labeled, the states of the
interacting and noninteracting systems may be put
into one-to-one correspondence. Therefore, since
these states are eigenvectors of finite matrices of the
same rank, we may conclude that all the states of
the interacting system may be written in the form
that we have given,

We conclude this section with some comments
on the interpretation of the values of g at which
the restrictions are violated. These values have pre-
viously been called the singular values® of g and
we will now indicate in what sense they are singular.
It can be shown that the pair energies possess well
behaved derivatives of any order with respect to
g at any point where they satisfy Eqgs. (5.1). This
can be shown by successive differentiation of Egs.
(5.1), see Eq. (3.38) above. Thus, the only singu-
larities that the pair energies have on the real-g
axis are located at the singular values of g. The
work of this section then suggests that the singu-
larities are branch points and that the pair energies
behave as (g,iae — ¢)"/“ in the neighborhood of
Jsing, the singular value of g. Of course, one should
not coneclude from this that the singular values of
g give some information about the domain of con-
vergence of the perturbation series for the energy
of the state since these singularities cancel each
other in the energy which is the sum of the pair
energies. However, a knowledge of the behavior of
the pair energies in the neighborhoods of the singu-
lar values of g does aid in the solution of Egs. (5.1).
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The electromagnetic potentials 4,(z) are quantized in such a way that their space components
are Hermitian and their time component anti-Hermitian. On the other hand, the metric in Hilbert
space and the Hamiltonian are positive definite. The above formalism, which leads to the ususl com-
mutator [4,(z), As(y)] = ig.sDo(x —~ y), is shown to be Lorentz-covariant over the manifold of
physical states. The latter contain neither longitudinal nor scalar photons (rather than an equal
number of them, as in the usual theory). This definition is also Lorentz covariant. The S-matrix is
not unitary, but satisfies PS*PSP = P, where P is the projection operator over physical states. In
other words, the S-matrix is unitary over the subspace of physical states, this being sufficient for

the interpretation of the theory.

1. INTRODUCTION

T is often stated that the quantization of the

electromagnetic potentials leads to serious dif-
ficulties, and in particular that that covariant
commutator

[Aa@), 45®)] = igasDo(z — ¥) (D

implies the introduction of states with negative
norm,*? i.e., of a pseudo-Hilbert space. Unfortu-
nately, very little is known of the mathematical
properties of pseudo-Hilbert spaces, except that most
theorems which can be proved for Hilbert spaces
would not be valid in them (e.g., the Schwarz in-
equality fails). From the physical point of view, the
indefinite metric leads to monstrosities such as nega-
tive probabilities, or probabilities larger than one
(there is no Schwarz inequality), etc.

Traditionally, these nonsensical results have been
escaped only at the expense of manifest covariance,
e.g., by taking the radiation gauge*

ao(z) = 0, (2)
[@n(x), 0, (1)] = —i[60n — 009.(00) "|Do(z — 1), (3)

or one of its generalizations.®”" Alternative quantiza-
tion schemes have also been proposed, in which

* The research reported in this document has been sup-
ported in part by the Aerospace Research Laboratories, OAR,
under Grant AF-EOAR-64-20, through the European Office
of Aerospace Research, U. S. Air Force.

1 Greek indices run from 0 to 3, Latin indices from 1 to 3.
The signature of the metric g,s is (+———). Creation
operators are denoted as c¢*, annihilation operators as ¢c=. We
use natural units ¢ = & = 1.

2 8. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1950).

3 K. Bleuler, Helv. Phys. Acta 23, 567 (1950).

¢+ A A. Sokolov, Vvedenie v Kvantovuyu Elektrodinamiku
(Gosudarstvennoe Izdatelstvo, Moscow, 1958), p. 56.

5J. G. Valatin, Kgl. Danske Videnskab. Selskab, Mat.-
Fys. Medd. 26, No. 13 (1951).

¢ L. E. Evans and T. Fulton, Nucl. Phys. 21, 492 (1960).

7 A. Peres, Nuovo Cimento 34, 346 (1964).

manifest gauge independence is achieved at the
expense of locality,*™*® or use is made of various
limiting processes.’*'’® Though mathematically and
physically sound, such alternatives are rather in-
convenient because they lead to a considerable
increase of the computational labor, to finally
obtain the same results as with Eq. (1).'*

In this paper, we propose a new approach, in
which we maintain altogether Eq. (1) and the posi-
tive definiteness of the metric in Hilbert space
and of the Hamiltonian. Physical states contain
neither longitudinal nor scalar photons (rather than
symmetric combinations of them,'® as in the usual
theory). All these desirable results are obtained in
See. 2 by making Ay(z) anti-Hermitian, while the
Ai(z) remain Hermitian. It then follows that the
S-matrix

S = T{exp l:—i f j"'(x)Aa(x)d“x]}, @)

is not, unitary. It is however shown, in Sec. 3, that
it is unitary over the subspace of physical states,
this being clearly sufficient for the interpretation

8 K. F. Novobitsky, Z. Physik 111, 292 (1938).

( ? F. J. Belinfante and J. 8. Lomont, Phys. Rev. 84, 541
1951).

o ., J. Belinfante, Phys. Rev. 84, 546, 648 (1951).

1 C, L. Hammer and R. H. Good, Jr., Phys. Rev. 111,
342 (1958); Ann. Phys. (N. Y.) 12, 463 (1961).

121, Goldberg, Phys. Rev. 112, 1361 (1958).

13 8, Mandelstam, Ann. Phys. (N. Y.) 19, 1 (1962).

% R. Utiyama, T. Imamura, S. Sunakawa, and T. Dodo,
Progr. Theoret. Phys. (Kyoto) 6, 587 (1951).

15 T, T. Wu, Phys. Rev. 129, 1420 (1963).

18 Footnote added tn proof: See also S. Sato, Progr. Theoret.
Phys. (Kyoto) 31, 256 (1964); A. Katz, Nuovo Cimento 37,
342 (1965); S. Weinberg, Phys. Rev. (to be published).

16 These symmetric combinations are popularly known as
“an equal number of longitudinal and scalar photons.” Actu-
ally, they have the form

(cot — ea*)¥o = [(ca*)* — nleo?)ylest + - - 1%
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of the theory. Finally, the Lorentz covariance of this
formalism is discussed in Appendix A.

From a “practical” point of view, this paper con-
tains of course no new result, but only a better
justification of Eq. (1).

2. QUANTIZATION OF THE FREE
ELECTROMAGNETIC FIELD

It was shown long ago by Peierls'” that the
commutator

[Fap(@), Fbs(@)] = —9(gay059: — 5,905
+ 955840y — Ga3950,) Dol — ) (5)

can be obtained directly from a variational principle,
without any reference to the potentials. If we now
introduce the radiation gauge potentials a.(z) by

means of
a, = fF(,k dz®, (6)
F., = d,.a, — 9.4, (M
da, = 0, 8

then we readily obtain, from (5), the radiation gauge
commutator (3). Note that Egs. (6)—(8) are com-
patible, in virtue of the Maxwell equations,

G"F,,,g = O, (9)
6,,F5., + agF.,,, + 6.,F',,,3 = O (10)

As is well known, a Fourier analysis of (3) and (8)
leads to

0@ = T [ e @lewe

+ oi)e 14" k) d%k,  (11)

where
kx = k| 2° — k-x, (12)

and the ¢j(k) are creation and annihilation op-
erators, satisfying

o1 = k), (13)

and
le3(®), ¢i(@)] = 8.;8(p — q), (14)
[e3(m, c3(@)] = [6%(p), ¢5(@] = 0. (15)

The unit vectors e'” are orthogonal to k and to
each other. (Note that the index j is an enumerator,
taking the values 1 and 2 only. It is not a vectorial
index.) For later convenience, we shall also define

e® = k/[kl, (16)
17 R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952).
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and

e’ =(1,0,0,0), a7
so that

2o ees” = bap, (18)

¥

where the sum over vy runs from 0 to 3.

It is easily seen that Egs. (11), (14), and (15)
are equivalent to the commutator (3). Unfortu-
nately, the latter has an ugly noncovariant aspect
(though actually, it is of course Lorentz covariant)'®
and, in order to obtain the manifestly covariant
commutator (1), it is customary to introduce un-
physical (longitudinal and scalar) photons, with
creation and annihilation operators ¢}(k) and ¢} (k),
respectively. However, if we write, as usual,

A0 = 2 f eV (k) [y (K)e™

+ ey ®e )4’ [kHTdK, (19)
then we do not obtain (1), but rather [4 .(z), 4(y)]=

—18,4Do(x — y). Thus, in order to maintain (19),
one usually takes, instead of (14),

[co@, co(@] = —o(p — Q). (20)

Now, if we multiply (20) by f*(p)f(q), where f is
an arbitrary function, then integrate over p and q
and take the vacuum expectation value of the result,
we obtain

2

[ e@i@der| = - [ j@Fea, @
i.e.,, we are led to a pseudo-Hilbert space with an
indefinite metric, as is well known.?'® [It seems that
this result could be avoided by reinterpreting c5 (k)
as a creation operator and ¢} (k) as an annihilation
operator, so that ¢, (K)¥, = 0 and ¢}(k)¥, = O.
This interpretation, however, leads to other dif-
ficulties, as shown in Appendix B.]

The alternative which we propose here is to allow

A,(z) to be anti-Hermitian, by taking instead of (17),
e = (i,0,0,0). (22)

We now have

efx T) e('y) —
el
so that we maintain both Eq. (19) and well-behaved
commutation relations like (14), and yet obtain the
manifestly covariant commutator (1). The drawback
of this method is, of course, that 4d,(z) is anti-

—Gas (23)

18 B. Zumino, J. Math. Phys. 1, 1 (1960).
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Hermitian. We shall presently see that this does
not lead to any serious consequences.

First, let us call physical states those which do not
contain any longitudinal or scalar photon, i.e., which
satisfy

;BT = o (Y = 0. 24

Only matrix elements between physical states are
physically meaningful, since the other states have
been introduced artificially, just for mathematieal
convenience. Now, it is easily seen from (11), (13},
(19), and (24) that

(@, 4.(2)9) = (2, a.(2)D), (25)

if both & and ¥ are physical. It follows that when
we compute (®, F,;¥), we can take

Faﬁ = ac:Aﬁ - aﬂAa: (26)
rather than the correct definition [see Eqgs. (6)-(7)]
@7

In other words, the 4 ,(x) practically behave as if
they were the true electromagnetic potentials. (This
property is, of course, shared by our formalism and
by the usual one.)

We still have to prove that this method is Lorentz
covariant, and in particular that the definition (24)
of physical states is invariant. Since this is a rather
technical question, we shall postpone it to Appen-
dix A.

Fag = 30,(15 - Gﬁaa.

3. THE S-MATRIX

Quantization of the free field is well known to be
relatively trivial with respeet to such questions as
Lorentz invariance, elimination of the unphysieal
photons, ete. The real problems arise only when
coupling to a quantized current is considered, and
we must now examine how the non-Hermitian 4 ,(x)
can interact with a Hermitian current density §°(z).
For instance, it is clear that the operator A ,(z)
cannot satisfy Maxwell-like equations. This is not
surprising, since 4 ,(z) is not related to the “correct”
electromagnetic potential a.(z) by means of an op-
erator gauge transformation.’

In this paper, we shall therefore relinquish the
old-fashioned approach to quantum field theory,
according to which the field operators must satisfy
equations of motion similar to those of classical
fields.”* As is well known, this approach leads to
serious mathematical difficulties™® because the

19 Tt is therefore somewhat abusive to call the present
theory “Quantum Electrodynamics.”

20 I, E. Segal, J. Math. Phys. 5, 269 (1964).
2 J. G. Taylor, Nuovo Cimento, Suppl. 1, 856 (1964).

PERES

fields are not well-behaved operators, but rather
operator-valued distributions, and products of dis-
tributions are mathematically ill-defined. (Anyhow,
the field equations are never used in practical
caleulations.)

The standpoint which we take here is midway
between that of the classic Lagrangian field theories
and the more recent S-matrix approach.?*'** Namely,
we consider only the initial and final states of the
physical system, which are generated by the free
fields and related by the S-matrix, the latter being
also constructed in terms of the free fields. It can
be shown that, for a given interaction, the condition
of causality alone is sufficient to determine the S-
matrix completely (except for renormalization).* It
is given by Eq. (4), above.

The essential difficulty caused by a non-Hermitian
4 ,(x) is that the S-matrix (4) is not unitary (because
the current density j* is Hermitian). Let us however
recall the physieal motivation for the unitarity of
the S-matrix.

The expression

l(\]?b) S\I’n)lz = (‘S‘I’uy \I’b)(\I’b: S\I’a): (28)

is the probability of a transition from state ¥, to
state ¥,. It can also be written as (S¥,, P,SV¥,),
where P, is the projection operator over state ¥,
If we now takea complete set of orthogonal states
¥,, then we must have

Zb: (S‘pa: Pbs‘pa) = (S#"av S"l/a) = 11 (29)

because Y, P, = 1, and (29) is the total probability
of obtaining any state. From (29), we obtain (¥,
S*8¥,) =1, and, since this is valid for any normalized
state ¥,, we finally have §*S = 1.

The above argument clearly applies only when
all the states of Hilbert space have an equal status.
In our case, however, we should consider only the
physical states, satisfying (24), since the other ones
have been introduced only for mathematical con-
venience. We thus have

ZP5=P9
b

( 2 8 Weinberg, Phys. Rev. 133, B 1318 (1964); 134, B 882
1964),
23 A, Peres, Phys. Rev. 137, B 696 (1965).

# N. N. Bogoliubov and D. V. Shirkov, Introduction to
the Theory of Quaniized Fields (Interscience Publishers, Inc.,
New York, 1959), Sec. 18. These authors actually construct
the S-matrix from the requirements of Loreniz invariance,
unitarity and causality. However, a careful examination of
their argument shows that the condition of causality alone is
sufficient to determine completely the S-matrix (except for
renormalization). Lorentz invariance and unitarity can then
be verified post facto. In particular, unitarity requires the
interaction Lagrangian to be Hermitian.

30)
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where P is the projection operator over physical
states, and, instead of (29),

(S¥,, PS¥,) = (¥, S*PS¥,) = 1, (31)

valid for any physical ¥,. It can easily be shown
that (31) is equivalent to

PS*PSP = P, (32)

ie., the S-matrix is unitary over the subspace of
physical states. Our task thus is to prove that (32)
indeed holds.

Although a direct proof is difficult, it can be seen
as follows that this is true. First, we note that all
our matrix elements (28) between physical states
are the same as in the usual theory (since we use
the same propagator) and therefore'® the same as
with the radiation gauge (3). In the latter case,
there are no unphysical photons at all and the
S-matrix is clearly unitary (in the usual theory with
the indefinite metric, S is pseudounitary). It follows
then that (32) must indeed hold in the present theory.

4. CONCLUDING REMARKS

From the ‘practical” point of view, this paper
contains no new result.

Our sole aim was to show that the familiar com-
mutator (1) can be derived without introducing the
indefinite metric, i.e., without violating the principles
of quantum theory. Incidentally, we have also ob-
tained a definition of physical states—no unphysical
photon at all—which seems more satisfactory than
the traditional one, according to which both kinds
of unphysical photons may appear in certain sym-
metric combinations.'®

The price we have to pay for these desirable
results may seem high: A4 .(z) is not Hermitian, and
the S matrix is not unitary. However, this does not
lead to any difficulty if we consider only matrix
leements between physical states, which are the only
ones appearing in nature. Unphysical photons—those
which violate Hermiticity and unitarity—appear
only in the ¢ntermediate states, where they enable
us to use the simple Feynman propagator, rather
than the cumbersome radiation-gauge propagator.

Whether or not the present quantization method
is preferable to the other ones® '** is of course a
matter of taste. Its spirit is closest to the Gupta—
Bleuler theory (as far as practical calculations are
concerned, it is identical to it). It seems, however,
that the use of anti-Hermitian operators is intel-
lectually more honest than the introduction of an
indefinite metric. I hope some readers will concur
with this view.
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APPENDIX A

We still have to prove that the above formalism
is Lorentz covariant. It is evident that the A4 .(x)
field, as we have defined it, is 7ot a vector field.*
Namely, under a homogeneous Lorentz transforma-
tion with coefficients L,*, which is represented in
our Hilbert space of states by a unitary operator
U(L), we do not have

Ao (La) = Lo UL) As(x) U*(L). (33)

Indeed, the unitary operator U cannot alter the
Hermitian or anti-Hermitian nature of A,(z), but
the matrix L,.* would mix up Hermitian and anti-
Hermitian components.*®

A formal proof that the theory is nevertheless
Lorentz covariant must therefore be given by dis-
playing explicitly the ten generators P, and M .4
of the Lorentz group.®® This is most easily done by
taking the latter as those for the purely transverse
(i.e., physically correct) electromagnetic potentials.””
For instance, we have

H=P, =3 [ k@@ @

the sum being taken over the physical photons only,

It then follows from Eq. (11) that the transforma-
tion properties of a,(z) are correctly reproduced:
the Lorentz transformation includes, in addition to
the usual vector transformation, a gauge transforma-
tion which restores a,(xr) = 0.® [It follows that
even a,(z) is not a genuine vector field.]*°

On the other hand, the unphysical part of the
potentials

% The reader may have in mind the counterexample of
the Dirac matrices v, which satisfy v,vs + vgvx = 2gnp. Then
7o is a Hermitian matrix, while the v, are anti-Hermitian
matrices. The whole system of matrices is nevertheless
Lorentz invariant. However, in the transformation law v, =
L, '#8vsS71, the matrix S is not unitary (the Lorentz group
has no finite-dimensional unitary representation).

2 P, A, M. Dirac, Rev. Mod. Phys. 21, 392 (1949); 34,
592 (1962).

. %" There are many other possible choices. Qurs is the
simplest (and also the closest to physical reality). Whether or
not these generators can be obtained, as in classical physies,
from an action principle, is, in our opinion, an irrelevant
question.

28 See Ref. 18, Appendix B.

% One should not be surprised by this result, since even
the “polarization vectors” e, () are not genuine vectors (their
time component is always zero). Their transformation law
has been discussed in detail in a lucid paper by S. Weinberg,
Phys. Rev. 135, B 1049 (1964), see especially Appendix A.
I am very much indebted to Dr. S. Weinberg for making his
results available to me prior to publication,
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Aa(x) - a.,(:t:) = f [Z'(c‘;e“‘z + 6;6_”")

+ &/ kD™ + oo ™) 1d%/4"" [k,

i8 not affected at all by Lorentz transformations, even
by mere translations. For instance, we have

f[Ao(x), H] = 0 # 30d(x).

(35)

(36)

In other words, the unphysical part of the potential
does not transform at all as a local field. At first
gight, this result might look somewhat strange. How-
ever, there actually is no compelling reason to
expect unphysical quantities to have well-behaved
transformation laws, because, as long as we restrict
ourselves to physical states, all the observables are
independent from them [cf. Eq. (25)]. In this connec-
tion, we note that Eq. (24), which defines physical
states, is Lorentz invariant.

We must still show that the S-matrix (4), which
is constructed by coupling a vector current to some-
thing which is not a vector, is nevertheless Lorentz
invariant. The proof is quite easy: it trivially follows
from the fact that, in the actual construction of
the S-matrix, the electromagnetic polentials A ,(z)
appear only through their commutator (1), or the
corresponding propagator, which are manifestly
covariant.

We may therefore summarize our approach by
saying that, in order to avoid the indefinite metrie,
we have been compelled to give A.(z) extremely
complicated properties. However, the commutator
[A.(zx), As(y)] is & very simple tensor, and since
this is the only quantity which actually enters in
the calculations, we can claim that the present theory
is “manifestly covariant for all practical purposes.”

APPENDIX B

It is sometimes proposed to replace the time
component of (19) by

44a) = [ 3™ + s Ik 4 [kl
(37

thereby avoiding the indefinite metric, while main-
taining both Eq. (1) and the Hermiticity of 4,(z).
Unfortunately, Eq. (37) implies, as is shown below,

PERES

that the scalar photons have negative energies,* a
property which leads to well-known troubles, in
particular with respect to the definition of the
vacuum.

To prove the above assertion, let us recall that
if a creation operator a,, creates a particle in a state
u,(z), then one particle states can be mapped by
functions of z according to

(38)

Let us now consider a complete orthonormal set of
such u,,(z), and let us go over to a new orthonormal
basis

an¥o = Un(z).

va(x) = Ecamu'n(x)r (39)
where ¢., is a unitary matrix. In virtue of the
superposition principle, the mapping (38) must be
linear, so that the operator al, which creates a
particle in state v,(z), is given by

az = z,..: Camlim. (40)
Likewise we have, for the annihilation operator
a, = ; Comlm. (41)
It then follows from the unitarity of ¢, that
$7@) = X anun(@) = X a2, (42)
and
¢" (@) = ; Anlin(2) = ; a:a(2), (43)

are independent of the choice of the orthonormal
basis, and therefore are acceptable field operators.
On the other hand, this property does not hold for
> atuna(z) or X asiia(x). We are therefore compelled
to interpret, in (37), e** as the wavefunction of the
scalar photon, and ¢™*** as the conjugate of its wave-
function. It then follows from (12) that the scalar
photons of (37) have a negative energy, which is
of course better than a negative probability, but
still is a rather unwelcome feature.

3 This fact is well known [cf., e.g., S. S. Schweber, An
Introduction to Relativistic Quantum Field Theory (Row, Peter-
son and Company, Evanston, Illinois, 1961) ﬁ 224], but we
shall now prove 1t without using, as usual, the explicit form
of the Hamiltonian, in order to avoid a possible controversy
on the choice of the latter.
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Some suggestions on the probabilistic structure of quantization are first obtained by studying local
properties of random variables such as continuity and differentiability with respect to a topology in
the sample space. This analysis is extended to analytic functions on the complex plane and conditions
are formulated under which probability densities are expressed as sums of absolute squares of com-
plex numbers. Physical restrictions are introduced through the Schriédinger equation for a single
bound-particle system. As a result, observations on a physical system become identified with the
random selection of points in a topological measure space and the physical observables such as energy,
position, and momentum, as well as time, are identified with measurable functions on appropriate
spaces. Time, considered as a function, appears to be multiple-valued with spacings between multiple
values and a detailed functional structure that characterizes and is characterized by the physical
system under observation and the physical observables being measured. Its detailed functional
structure is related to the physically measurable probabilities of quantum theory and it is seen to
serve in the capacity of a conditioning random variable in the computation of quantum mechanical
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expectations.

INTRODUCTION

N the Schrodinger representation for a physical

system, time enters as a real parameter, while
energy, position, and momentum are represented by
operators. From the Schrodinger point of view, it
is also the case that statistical assertions enter in
the postulates concerning certain Hermitian op-
erators, while time is not treated statistically. We
wish to display an alternate quantum mechanical
representation, entirely consistent with the Schré-
dinger picture, in which energy, position, momen-
tum, and time are treated alike and each is rep-
resented by a measurable function on an appropriate
topological measure space. In this presentation, ob-
servations on a physical system are identified with
the random selection of points in a topological space.
The points selected determine the values of the
physical observables, including time, and the func-
tional structures of the energy, position, momentum,
and time determine the forms of the physically
observable distributions. We are thus justified in
using the logic of measure-theoretic probability
theory in constructing expectations and conditional
expectations. It results that conditional expecta-
tions, given the time function, can be identified with
the time-dependent quantum mechanical expecta-
tions.

While the treatment of the time and the space
coordinates as similar entities is in the spirit of
relativity theory, all the physical restrictions in-
troduced into the theory are dictated by the non-
relativistic Schrodinger equation. The proof of our
basic theorem is limited to the case of a one-dimen-

sional bound-particle system in which potential
energy is independent of time, though there appears
to be no reason why all our arguments would not
generalize.

From the rudiments of measure-theoretic prob-
ability, we recall that for pairs of finite, single-valued,
real, measurable functions ¥ and X defined on a
normalized measure space S, there exists, under
suitable circumstances, a conditional probability
function p(y. | ) or a conditional probability density
function p(y | z) that relates to the conditional
expectation of Y, given X, through one of the rep-
resentations

E(Y | X =z2] = X yp(y. | 2),

n

EY X == [ wly|a)dy.

We can combine these in the Stieltjes representation
with conditional distribution function F(y | z) of ¥,
given X,

HY|X =31~ [ yary|o).

This analysis can be extended to other settings in
which § is a measurable subset of the complex space
(or, more generally, a vector space) and in which
the conditioning variable X is multiple-valued and
complex. We will assume in this introduction that
the details of such extensions are known.

While the form of the function F(y | ) is most
frequently implied from the measure-theoretic char-
acterization of the functions ¥ and X, namely their
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joint distribution, it can also be deduced from the
analytic or topological properties of ¥ and X, such
as their differentiable properties, if such are defined.
As we will see in later sections of this paper, the
latter circumstance is more natural to our purposes,
in view of the fact that analytical information is
given to us through the wavefunction.

In the calculus of quantum theory also, distribu-
tion functions enter, though these are not generally
related to well-defined measurable functions on meas-
ure spaces. That is, for each physical observable
with corresponding Hermitian operator L, with
eigenspectrum A(L) = {A}, and with corresponding
resolution of the identity E., we write, for state
vector ¢,,

FL.t()\) = (EL(}\)¢t7¢t);

where F, , is a distribution function that is related
to quantum mechanical expectation through the
identity

(Lo ) = [ NdFL..

It will be of particular interest to us to identify a
distribution function of the type F ., with a conditional
distribution function F of one measurable function
given another.

For each physical observable corresponding to
Hermitian operator L with pure or discrete eigen-
spectrum, no degeneracy being present among the
eigenvalues, let us represent the most general nor-
malized solution ¢,, — o < ¢ < «, of the Schro-
dinger equation as a set of ordered pairs,

(wt()‘)’ )‘); wt()‘) complex, AE A(L):
in which the w,(\) are restricted as follows:

Z th(u)!zy

ush

@

if A isdiscrete;
FL,!()\) =

f lw.(w)|* du, if A is continuous.
24

As examples, if L is the energy operator, A is discrete
and A = E,:

o) = a6 EE

If L is the position operator, A = {g: — o < g < »},
and for A = ¢
w(g) = é.(q).

If L is the momentum operator, A = {p: —o <
p < wo},andforx = p

w:(p) = 'h(P);

RANKIN

where

Y. (p) = —(27:—7b)§ ./‘_: ¢¢(Q)e_imﬁr dq.

With the aid of the representation (I) of the
general solution to the Schrodinger equation, we
now formulate two theorems. The contents of Secs.
3, 4, and 5 will provide a proof for the theorems,
though these sections will progress informally by
exploring the probabilistic meaning of the theorems
first and by imposing physical restrictions last.
Theorem 2 is the primary conclusion of this paper.
From it we can derive a number of physical con-
clusions concerning the quantum mechanical strue-
ture of time.

Theorem 1. Let the set of ordered pairs (I) rep-
resent the most general solution to the Schrédinger
equation for a one-dimensional bound-particle sys-
tem with time-independent potential energy. Let
L be the Hermitian operator corresponding to energy,
position, or momentum. There is a line in the complex
plane ¢ + v, (, & constant, —» < { < ®), a
neighborhood N of this line, and two functions
2, = {2.0), N € A}, 2 = {2/0), M € A(L)}
for each complex number z & N, such that:

(a) If A(L) is discrete, 2, and Q. are vectors in
Hilbert space and

Q:\) = d2.(\)/dz, foreach A\ & A(L).

(b) If A(L) is continuous, 2, and Q! are functions
in L,-space and for some orthonormal set {¢,} and
complex coefficients {a,(2)}:

%M = Lim. 2 @DV,

> n=

N
2O = lim. Z%z(—z)

Nox R

$a(N).

(¢) Moreover, for all A in Case (a) and for almost
all A in Case (b):

(2 N)]emt4i00 = @ (V).

We now define for each operator L specified in
Theorem 1, a space S = S(L) and a function T
defined on S in terms of some neighborhood N and
some function @, that satisfy Theorem 1. We write

§=U8, 8 ={2ad, zEN]

AEA

TQ) =2z ifandonlyif Q = Q,(A).

Theorem 2. Let the set of ordered pairs (I) and
the operator L be as defined in Theorem 1. Let £
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be a measurable function defined on the space
S = 8(L), such that £(Q) = Afor @ € S\. Let T
be defined above. The distribution funetion F; , and
the conditional distribution function F of £, given
T, are the same:

Fo.(\) =TFQ|0.

The proof, found in Secs. 3, 4, and 5, follows from
the fact that whether A is discrete and p(\ | ¢) is
the conditional probability function of £, given T,
or whether A is continuous and p(A | ¢) is the condi-
tional probability density function of £, given T':

PO\ l t) = IQ:()\)lﬁ-tHu = lwt()‘)l2)

for all A, if A is discrete, and for almost all A, if A
is continuous.

This analytic characterization of p(A | £) in terms
of the derivative of the inverse of T, derives from
a more general expression for conditional probability
or probability density in which T belongs to a general
measurable set B in N

0T EB) = [ 120 dtds,

for all A, if A is discrete, and for almost all A, if A
is continuous. It thus becomes clear that Theorem 2
depends strongly on the topological representation
of conditional probability considered as a neighbor-
hood property of the conditioning function 7'. The
theorem also depends strongly on the fact that for
almost all A in A the function Q,, that is the inverse
of T, is analytic over a region, in the sense defined
by its L,representation.

Though fairly extensive conclusions concerning
the physical meaning of 7 will be developed in
Sec. 6, the following facts may be stated here. The
function 7' plays the role of time. It is studied
simultaneously for its statistical (or global) prop-
erties and its topological (or local) properties. The
term, “micro—macro’” function, will be introduced
for such functions and 7 is referred to as “micro—
macro time,” or “quantum mechanieal time.”

The functional structure of micro—macro time
depends on the operator L and the solutions to the
Schrodinger equation. From Theorem 2 it is seen
that the probabilities of quantum theory, as they
relate to an operator L, are deducible from the local
properties (or fine structure, so to speak) of micro~
macro time. In general, for each eigenvalue A, Q,(\)
is periodic as a function of 2z, and thus, from the
definition of 7, we see that 7 is multiple-valued
with multiple-valued structure depending on the sub-
space S, over which it takes its values.
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For example, if L is the energy operator, the spac-
ing between multiple values of T are equal to h/E,,
depending on the subset S(g,, over which 7' takes
its values, where & is Planck’s constant. This prop-
erty is in conformity with the uncertainty relation
between energy and time, as will be clarified in
Sec. 6. The multiple-valued structure of T is also
shown to be in conformity with the correspondence
principle of quantum theory.

We conclude that the functional structure of
micro—macro time is consistent with the probabilities
of quantum theory and, in fact, can be used as a
logical tool for calculating and interpreting those
probabilities. Consistent with this point of view,
however, the concept of time as a micro-macro func-
tion and the classical concept of time as a real
parameter merge in the quantum mechanical des-
seription of physical systems in the maero-world.

A remark concerning notation may be helpful.
Though in stating Theorems 1 and 2 we have used
the general notation Q,(A) in both the continuous
and discrete cases, it will be useful to vary the
notation in the ensuing sections. In the context of
measuring energy we will write

2.(\) = a(2), X = E.

In the contexts of measuring position and momen-
tum, respectively, we will write

2.0 = 2.(g),

It is also worth noticing that in the concise
language of the theorems it has been convenient
to express results in terms of conditional distribution
functions. In the body of the paper, it will be better
to concentrate on conditional expectation. The rela-
tionship between these two entities has been sum-
marized above.

A=gq, and Q,QA)=V¥,(p), A=p.

1. SUGGESTIONS FROM PROBABILITY THEORY

The following facts have been enigmatical to
investigators in the theories of probability and quan-
tum phenomena. First, the fact that the probabilities
of probability theory are measures in a measure
space while in quantum theory they are absolute
squares of complex numbers. Second, the fact that
the familiar structure of measure-theoretic prob-
ability theory is in default of any obvious quanti-
zation properties corresponding to the quantization
of physical measurables. Third, the fact that the
law of large numbers in probability theory, in con-
tradistinction to the uncertainty principle of quan-
tum theory, omits any reference to the limitation
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of accuracy attainable in measuring two variables
simultaneously.

Certain suggestions that one can obtain from
probability theory indicate, however, that these
apparent enigmas are favored by the different per-
spectives that are natural to the two theories, and
that a new perspective taken in one of the theories
or both would minimize the enigmas.

For example, if in probability theory we limit
ourselves to a measure space composed of the unit
interval and to random variables defined on this
space that are continuous and differentiable, and
if we express probability density functions and condi-
tional probabilities in some unconventional forms
that involve derivatives of the random variables,
then there appear sums and sums of products
involving these derivatives in a manner suggestive
of inner products in Hilbert space. Hilbert-space
theory is, of course, characteristic of quantum theory,
though not generally of elementary probability the-
ory. An analysis of elementary probability theory
that would bring out its Hilbert-space characteristics
is, thus, one interesting way to obtain suggestions
of the desired type.

If X = X(e) is a random variable defined on the
unit interval, 0 < « < 1, that is continuous and
differentiable, and if the derivative of X is zero for
at most countably many points «, then X has at
most a countable number of inverses, each of which
maps a subinterval of the range of X continuously
onto a subinterval of the domain of X (see Fig. 1).
We write these inverses as

a2=a2($),"';an:an(x))'”' (1)

A simple analysis shows that the probability density
function of X, that is the function p = p(x) that

a; = a,(x),

!
i
1
3

58(:)

RANGE OF
a7

\J

Fia. 1. Graph of a random variable X defined on the unit
interval, showing how a point in the range of X is mapped
into points between O and 1 through the inverse functions
ay, az, +++,an -+ + . For convenience of drawing, inverse func-
tions are given subscripte with values increasing as their
range values increase from left to right.
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satisfies

$3

PIX <u] = f p(z) dz,

—w <y < o (2)

can be analyzed for almost all values of z in the
range of X as

p@) = @] + ls@)] + -+ + lea@)| + -+, @)

where we define o/(z) to be da(x)/dz if z is interior
to the domain of definition of a,, and 0 otherwise
(see Fig. 2).

Fia. 2. Graph of a random variable X defined on the unit
interval, showing the probability forz < X < z + Az to be
approximated by a sum of terms of the type la:'(z)] Az. A point
selected at random between 0 and 1 will determine a value of
Xall;etween z and = < Az, if it falls in one of the shaded inter-
v

If the vector o' (z) is defined as ’
o) = (li@)], @], -+, ln@], --), @

the density p(z) can be expressed as an inner product
of &'(z) with the countable-dimensional unit vector 1:

p(@) = (@), 1. ®)

More generally, the joint density between X and
an arbitrary random variable ¥ on the unit interval
can be defined as an inner product. For this purpose,
let 1(z, y) be the vector with nth-component equal
to one if Y]e,(z)] = y and O otherwise. For each z,
one has 1(z, ¥) = 0 except for at most a countable
number of values of y. Let y4(2), k = 1,2, 83, ---
be those values for which 1(z, y.(z)) # 0. The joint
density, that is the funetion k{z, y) that satisfies

PX <o,V <ul=[ 3 b uedd, ©

z<e yr(z) <%

can be analyzed for almost all values of z interior
to the range of X and for each y as

bz, y) = (¢ (@), 1@, y)). @)

As a consequence of (5) and (7), the conditional
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probability of the event ¥ = y given X = z is
expressed as

g(y | x) = (¢’(@), 1(z, 1))/(¢' (&), 1). (8)
When the vector
y(@) = (Y[en(@)], Yo @), - -+, Y[e(@)], --)  (9)

is introduced, expression (8) and the usual definition
of conditional expectation of Y given X = z yield

E[Y | 2] = (¢(@), y@)/(¢'(@), D).  (10)

This analysis is entirely within the realm of
elementary probability theory, but introduces the
Hilbert-space geometry by virtue of the rather
special character of the random variable X. Thus,
it is suggested that a formalism similar to that of
quantum theory can be obtained by putting stricter
conditions on random variables than are expressible
in terms of distribution functions, for example, con-
ditions of continuity, differentiability, and the like.
An exact replica of quantum analysis cannot arise
without the introduction of a complex space in place
of the unit interval and without some restrictions
imposed upon the random variables in terms of a
mechanics.

Even within the elementary probability framework,
guantization characteristics appear. This is partic-
ularly evident in the countably many values y.(x)
for which 1(z, y,(z)) % 0, or, expressed differently,
in the discrete character of the conditional distribu-
tion (8) (see Fig. 3).

Frac. 3. Graph showing quantization of a continuously dis-
tributed random variable Y under the condition that for
random variable X, X = z. In the diagram the only allowed
values of Y in the presence of the condition X = x are yi(z),
yo(x), ys(x), ya().

2. MICRO-MACRO FUNCTIONS

In the introductory remarks it was suggested that
random variables could be used to deseribe quantum
effects, provided that more analytical detail were
known about the random variables than was con-
tained in their distribution functions or joint dis-

1061

tribution functions. Specifically, it was seen that
certain properties of functions on a topological space,
such as their continuity and differential properties,
become useful for our immediate purposes, though
such properties are quite foreign to the main stream
of probabilistic analysis and statistics. More gen-
erally speaking, we will find use for local properties
of random variables (that is, those defined in terms
of a topology on the space of definition), as well
as global properties (that is, those statistical prop-
erties defined in terms of the joint distributions).
On the other hand, in the present calculations, we
wish to avoid the criticism, frequently stemming
from the trend toward generalization in modern
mathematics, that the concept of “random variable”
is being misused or unnecessarily specialized by the
introduction of local properties. Thus, we introduce
a new term. We will call a function f defined on
a space S a micro~macro function, if the space S
possesses an associated class of measurable subsets,
a measure, and a topology, and if the function is
measurable with respect to the measurable subsets.
It is understood in a qualitative sense that the term
“micro—macro function” is used in the context of
probabilistic ealculations. It should be remarked that
this general definition does not exclude spaces S
that are complex (as will be apparent in the next
section) and does not exclude micro-macro functions
that are complex, unbounded, multiple valued, and
with unnormalized distribution functions. Thus, the
term ‘“‘micro—macro function” calls upon more
specific requirements on the space S but is in some
ways more general than the term “random variable.”
The term ‘“micro-macro function” can in many
contexts be used as synonymous with “random
variable.”

3. THE COMPLEX SAMPLE SPACE

For the analysis of quantum theory we will need
the following sample space (possibly unbounded):

S:{w:w=2z+41y, (r,y) € 8?, where S is a
measurable subset of the Euclidean plane}.

The measure m associated with subsets A of S will
be defined in terms of the Lebesgue measure u of
two-dimensional real sets 4® of the form

A® @, y) 1z + iy € A).

That is, we define m(4) = u(4®) for all measurable
subsets A® of §®.

A single-valued complex function T = T(w) of
the complex variable w is called measurable if for
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each two-dimensional Borel set A® the following
set is measurable: {(z, y) : T(w) € A}. We will
frequently be concerned with complex measurable
functions 7' defined on S that satisfy the following
properties.

T;: For each complex value z = u 4 o in the
range of T there are in S at most countably many
solutions w,, w,, --- , w,, --- to the equation:
Tw) = z.

T,: For almost all complex values z, in the range
of T and in some neighborhood of each solution w,
of the equation T'(w) = z,, the function 7 = T'(w)
has a single-valued inverse a, = a,(2). The functions
a, are continuous and possess continuous first partial
derivatives.

Ts: For almost all complex 2z in the range of T,
the series

da,

da, y, Oan
v

6ux

Z

i1s convergent. The sum is assumed to extend over
all n for which T'(w,) = 2.

Thus, in the sequel, we will assume that @ measurable
function designated with the symbol “T”’ has properties
Ty, T,, Ts;. The meaning of the property 7T'; will
become clear when we can interpret the micro-macro
function T as a random variable and can identify
the sum appearing in assumption 7'; with the prob-
ability density of 7'

For a micro—macro function T' = U 4 <V with
real and imaginary parts U = Uz, y), V = V(z, ),
we may define a measure m of the set {w : T(w) € A}
in terms of the two-dimensional Lebesgue measure u:

miw:T(w) €4} =p{(z,y) :(U,V)EA®}, (1)

and, in particular, if A(u, v; du, &v) is the region
defined by the double inequality: A (u, v; du, &v):
u<U<u+ du,v <V < v+ &), we have,
for almost all complex z = u 4+ v,

miw : T(w) € Alu,v; su, &)}

>

n

da,
ou

X %‘ ou b+ o(ou ),  (12)

with convergence of the sum assured almost every-
where by property T';. Because the sum in (12),
which is a function of 2 = w 4 v, behaves like a
density, we define the probability density of T as
follows:

da,

da, o
v

aux

(13)

p@) = E

RANKIN

for all z for which the sum has meaning and exists
(see Fig. 4). »

~
R0 g Q (u+8u,v+3v)

; Q(u+3u,)

g—g x % | 8usv +o(3u,8v)

Fic. 4. Schematic graph showing that a summand in the
probability density for T = U 4 ¢V is [a/]%, where & is one
inverse of T. A point chosen at random 1n a finite region of
the z, y plane will determine the simultaneous conditions

u<U<u+duv <V <wp-+ &, ifit falls in the shaded
rectangle. If T' is analytic, |da/du X da/dv| = |a'|% :

If the micro-macro function 7 is analytic, we
deduce from known theorems that, for almost all z,
each inverse a,(2) is analytic. The Cauchy-Riemann
equations hold for each «,(2) = X,(u, v) + ¢V, (u, v):

X, _9Y,  oX. _

ou o ’ o

_aYn.
du

(14)

From the definition of the vector product we have

tos _ (0,37, _ oK, o7
X d —n<6v du u /) (15)

where n is the normal vector. Thus
5+ ()

( o + I

Again, from the analytic property of «,, we conclude

_ da(?)
T odz !

da,
u

2

9" (16)

v

Oay o, o
axav

p@) = 22 |, o (17)
where the sum is assured to converge for almost
all z by property T;. Equation (17) is the complex
analog of (3) with squares of absolute values arising
in a natural way from the complex character of the
sample space. Due to the desirable form of (17),
we also assume throughout the remainder of this paper
the following:

T,: The function 7 is analytic over S.
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4. THE TRAJECTORY SAMPLE SPACE

For greater convenience, we will make a reformula-
tion expressed as a further assumption having to
do with the inverses of the micro-macro function T'
(assumptions are not independent).

Ts: The complex sample space S can be partitioned
into at most a countable number of parts S,, S, - - -,
with \US, = 8, such that for each positive integer
n, T assumes no value twice in the interior of S,.

Assumption T insures that the function T' re-
stricted to the interior of S,, n=1,2, -+- ,n, -+ is
schlicht. We may identify «, with the inverse of T
restricted to the interior of S,. In the sequel, we will
assume that this identification is made. We will write
a,(2) =0 if 2 is not in the domain of definition of a,,
that is, if 2 is not in the range of T restricted to S,.

If, as in Sec. 1, we introduce the vector o'(2) with
components «.(z), and for any micro-macro func-
tion L defined over S we introduce the vector
% = A(z) with components L(a,) = L[a.(2)], the
conditional expectation of L given T, provided it
exists, can be analyzed:

EL|Tw)] = A@d, «)/|||', Tw) =2 (18)

DOMAIN OF T: S=US,
|iy,xI
i

livdg
| 1
|
2 |

(a)
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where

AR o = (L) af, L(as) 04, -+, Llan) ey, - )

Moreover, if the micro-macro function L is measur-
able with respect to the smallest o-field containing
the sets S,, Sz, - -+, S,, « - -, it is clear that L assumes
constant values A, over the interior of corresponding
sets S, and A(2) is independent of z [see Fig. 5(a)].

Thus, for micro—macro function L measurable with
respect to the smallest o-field that contains the sets
Sy, Se, ++-, S, -+, We can write

BL | Te) = 3L,

provided L is real and the series converges. It is
significant to remark on the similarity between the
expression (19) and the familiar expression in quan-
tum theory for the expectation of a physical measur-
able whose associated operator L possesses a discrete
spectrum. In the latter case, the complex numbers
o! are the coefficients in an expansion of the wave-
function ¢ in terms of an orthonormal set of func-
tions ¢, in L,-space, and the numbers A, are eigen-

fw) =z, (19)

real time axis E

LT

RANGE OF T ON Sg4 l

u
RANGEOFTONSsl llllll

RANGE OF T ON Si

RANGE OF T ON §

(b)

Fie. 5(a). A graph suggesting one way to associate discrete values A, of a micro-macro function L with subregions 8, of the
complex plane. The logical union § ='US, of the annular subregions S, is consistent with the domain of T when measurement is
made on the energy of the harmonie oscillator. For comparison with later generalization (Fig. 6), the subregions S, are plotted
50 as to correspond to values A, on the A-axis. Shaded areas are interpreted in Fig. 5(b). See Section 5. (b) The range of the
micro-macro function T as defined over the annular regions S, of Fig. 5(a). Multiple shaded regions in the range of 7 are
mapped by T from the shaded areas of the corresponding regions S.. A point chosen at random in § of Fig. 5(a) will be in S,
with probability proportional to the area of S,. Given that the point is in 8,, 7’ will have a value in each of the multiple shaded
regions of its range over S, with probability proportional to the shaded area in S,. The decrease in the spacing between multiple
values of T as n increases corresponds roughly to the behavior of quantum mechanical time for the harmonic oscillator as the

energy level increases.
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values of the operator L corresponding to the
eigenfunctions ¢, : L¢, = A.¢,. That is, we compare
(19) with the quantum mechanical statement, EL =
(Lo, $)/|1¢]|%, in which L is an operator.

At least two signifieant aspects of this analysis,
as it relates to quantum theory, require further
clarification: (1) What extensions to the geometrical
reasoning offered up to this point will accommodate
the statistical properties of operators with con-
tinuous spectra? (2) What interpretive role can be
given to the functions 7, L, ete.? In the remainder
of this section, we attend to question (1}.

The following correspondences are significant:

I: There is a one-to-one relationship between
points z in the range of T and vectors a(z) =
(e(2), aa(2), -+ , a(2), ) composed of compo-
nents such that for each z, «,(z) & S,. The vectors
a(z) may or may not belong to Hilbert space.

II: For each point z in the range of 7, there is
a vector o(z) in Hilbert space.

It is natural, for the sake of calculational sim-
plicity, to make the following further assumption on T;

T,: For the function T and for almost all z in
the range of T, the vector e{z) belongs to Hilbert
space. (We allow that the dimensionality of Hilbert
space may be finite or countably infinite.)

Correspondences I and II and Assumption T,
together with relations (17), provide us with the
consequence that there exists a point-to-point map-
ping from the range of T to a subset of Hilbert
space which preserves measure in the sense that

p() = [l @I

In order to enrich the geometry sufficiently to
accommodate the statistical analysis of operators
in Hilbert space with continuous spectra, we must
supplement the correspondence (20) with a corre-
spondence between points a, = a,(2) in S, and
vectors in L,space. In this way we are led to
associate each subset S, with a member ¢, = ¢.(g),
— o < g < o, of an orthonormal set in L,-space
and to associate the root w, in S, of the equation
T(w) = z with a,(2) -¢,. Writing

B,(0) = 2 a2) 6u(0), Q) = 2 al®)-dalg), @1)

n n

(20)

z < a(2);

where we understand the sums defired in terms of
limits in the mean, we supplement (20) with:

lw@If = [ 121 da. @22

a(z) <> P,;
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For the sake of enriching the geometry, we may
now interpret the Hilbert-space point e(z) as s set
of ordered pairs, (®,(g), ¢), or a trajectory {®,(q),
—~o < g < o}, Let us consider the space 2, of
the union of all such trajectories for z in the range
of T. The trajectory space Z, can be written
Eq = {('ll-),Q) W o= q’:(Q): —w < q < @,

2z in the range of T'}.

If each pair (2, ¢) defines a point (35, ¢) on at most
one trajectory; that is, if trajectories do not cross,
then we may also establish the one-to-one cor-
respondences

(z, @) © (e(2), g} < (@, 9). (23)

A function A = h{w) on S uniquely defines a
function 2 = A(w, ¢) on 8 X R through the defini-
tion: A(w, ¢) = h(w). In particular (see Fig. 6),
if h = T, we can further define a function on I,
through

T(w, q) = T(w, ¢) = T(w),
if and only if % = ®pw(g). (24)
In this statement, we take advantage of the many-

iv

rool fims nx!s*

~

e
-,

N
s _—>C-pOMAIN OF T

Fie. 6. Illustration of the range and domain (trajectory
space) of T when measurement is made on continuous spectra.
A point in the shaded region of the domain is mapped t rough
T into the multiple shaded regions of the range. A point in
any shaded portion of the range is mapped through an inverse
2,{q) of T into the shaded portion of the domain. Details in
the graph having to do with the spacing A/E, between multi-
ple values of T, the polar coordinates #,(u), p,(v) and the
shape of the trajectory &, are consistent with measurement
of position of the harmonic oscillator in its ground state. For
these details see Sec. 5 and 7.
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one correspondence (w, q) — (&, ¢q) determined by
the equality ¥ = ®r.,,(¢) and the fact that T is
constant over the set of pairs (w, ¢) that map into
a fixed point (0, q). For certain purposes it is
convenient to consider T defined on Z, and for others
to consider T defined on Sor § X R.

We may consider more general functions Q@ =
Q(w, g) defined on =,. By assuming that Q is a
micro-macro function and by taking advantage of
the topology on 2, we can inquire into the existence
of the probability density of @. It occurs, however,
that joint probability densities and conditional prob-
ability densities are especially important for our
study of the probabilistic structure of quantum
mechanics.

We proceed by considering the important case of
micro-macro functions on I, of the form

Such functions can be transferred to S X R space
through the definition Q(w, ¢) = Q(w, g) for every
pair (w, q) that maps into (&, ¢). When such a
function Q(w, ¢) is considered as a function of its
first argument w, it is seen to be measurable with
respect to the smallest o-field with respect to which
T is measurable.

Considering, as a special case of (25) the function
Q(w, q) = q, we seek the joint density between Q
and 7. For fixed ¢, ®,(q) is the inverse of T'(w, ¢)
in the sense that T[®.(g), g] = 2. From expansions
(21), ®,(¢) behaves like an analytic function of z.
Thus, by the techniques of the previous section,
the conditional probability density of T given @ is
seen to be

ve | o) = 1@/ [ o0 e

(25)

(26)

assuming that the normalization integral exists. If
the normalization integral exists, we identify it with
the probability density of @. Thus, we write the
joint density of 7" and @, without qualification as

PG, @) = |9 @7

From this it follows immediately that, for any
micro—macro function @ satisfying (25), we have its
conditional expectation given 7' as follows:

o0 | 769) = [ LR

This integral has, in fact, the familiar form of the
expectation of a physical measurable whose cor-
responding operator has a continuous spectrum.

(28)
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5. THE RESTRICTION IMPOSED BY THE
SCHRODINGER EQUATION

While it is clear from the above constructions that
a micro-macro function T satisfying assumptions
T, — T, determines the function ®(g), up to its
L,-representation, it is not necessary that a given
Lfunction ®.(¢) admits the above construction in
terms of a micro-macro function 7 that satisfies
assumptions T, — 7T, We will now indicate how
a slight broadening of the concept of 7' makes
possible the desired construction of a given ®/(q).

The reason for concern over this point derives
directly from the obvious fact that ®!(q) appears
to play the role of the quantum mechanical wave-
function in equations such as (28), and, as such,
should be restricted by the Schrodinger equation
if a physically meaningful result is to be derived.
That is to say, before a verification of the consistency
of the above probabilistic construction with the
apparatus of modern quantum theory can be borne
out, it must be verified that ®.(g) can be made to
satisfy the Schrodinger equation, at least in some
sense. Such a verification must entail relating the
range of the complex function 7' with the real axis
of time and relating the micro—macro function 7,
itself, with the usual independent time parameter t.

As an example, let ¢, (g) satisfy the time-dependent
Schrédinger equation

Hg¢,(q) = ihde.(g)/at,

in which H is the Hamiltonian operator for a bound-
particle system with one degree of freedom and with
time-independent potential energy. It is well known
that the most general solution of (29) is

$:(Q) = 2 a.e " (g,

(29)

(30)

where the real constants E, are the eigenvalues and
the complex functions ¢,(g) are the eigenfunctions
for the operator H, assuming no degeneracy:

H¢.(q) = E.$.(g). (31)

Let a function &,(¢q) of the complex variable
2z = u -+ % and the real variable ¢ be defined such
that for some pure imaginary number ¢v,:

i1 i.(0) = ¢:(9). (32)

A comparison of Egs. (21) and (30) suggest an
identification of the coefficients a,e™*"** and o’(z)
over a region of the complex plane that includes
the line {¢ + %, — < ¢{ < «}, If one attempts
such a comparison, however, while retaining o (z)
as the derivative of an inverse of a micro-maero



1066 BAYARD
function 7, certain difficulties are encountered hav-
ing to do with the periodic behavior of the exponen-
tial function. Thus, the following assumption of T
naturally suggests itself as a generalization of the
requirement that 7 be single-valued and the assump-
tion will hold throughout the remainder of our work.

T: The function T is single- or multiple-valued
in such a way that each of the inverses «,(2) of the
restriction of 7' to the corresponding set S, is periodic
in % (with finite or infinite period).

The wording of the assumptions 7,~-T, and the
remarks following definition (25) admit obvious in-
terpretation which makes them consistent with as-
sumption 7. The term “inverse” will be retained
for the «,(2z) by virtue of the option to identify
a,(2) over a given period with the inverse of a
corresponding branch of 7. Mappings I, (20), (23)
become many-one.

Thus, with periodicity allowed in the inverses of
T, we can, in fact, make the identification

a'/‘(z) = ane-‘ iEnz/'h’

n=12--, (33

over certain regions of the complex plane, from
which we obtain as formal general solutions to the
inverses of T'

a,(2) = (ta,/E)e " + k,, n = 1,2, -+, (34

where £, is a function independent of z. These solu-
tions are analytic, as desired by assumption T,, over
any region of definition in the complex plane.

We must next attend to the requirement that
each function «,(2) can be identified with the inverse
of a function T restricted to a set S, and that the
union of such sets S, constitute the domain of 7.
At the same time, all the assumptions 7,—7"; must
be satisfied. For this purpose, we choose to set &, = 0,
n =12 ---,and write
@ = pa@e™ ;5 pa0) = (lah|/Ee™"

8.(w) = —[(E,/hu — arg (ia,)]
defined forallz = u + o, — < u < ®,v,, <
v < Vs, the bounds for v to be defined. It is noticed
that o,(2) is periodic in u with period (h/E,)j,

h = 2rh, j=1,2 --- . We also defined for each
positive integer n, the annular region

(35)

S = {a(a) 1 — <u< °°:Ul.n<v<vz,n<0},
(36)

where v,,, and v, , are so chosen for each positive
integer n so that the annular regions S, are dis-
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joint' and assumption T is satisfied [see Fig. 5(a)].
In regard to assumption T, it is sufficient to select
the v, , such that

@l = T @l < X

2
e2E,.v..n/'lr <

ah
E,

37)

which is always possible. In particular, if the eigen-
values E, counstitute a strictly increasing sequence
as a function of n that diverges sufficiently rapidly,
then all the annular regions S, can be defined by
bounds v, and »,, that contain a fixed point
Vol V1,0 < Up < Us,.. We will tacitly assume in the
sequel that this is the case, though it is not essential
to do so. The most common examples of quantum
mechanical systems—for example, the harmonic os-
cillator for which E, = (n — %)ho—suggest this
simplifying but unessential assumption.

With the inverses (35) and the subspaces (36)
defined, we are free to constitute the desired micro—
macro function 7' as that function whose domain
of definition is § = US, and whose inverse over

S, is a,(2), » = 1, 2, --- . Thus, we are led to the
function
ih Ew | _
T(w) =E-—nlogl:;h———%], w&E S8, n=12 --.,
(38)

where the logarithmie function is the usual complex
multiple-valued function. For w in S,, the range
of T'(w) is the set of all complex z = u + 1, with
—o < u < o v, <v < v, Assuming that
there is a fixed point v, such that v, , < vy < v,
then u 4 v, is common to the range of T'(w) for
win8,,n = 1,2, --- , The multiple-valued property
of T is displayed by writing, for z = u + %v,, in the
range of T’

k. . .
Tlaa(2)] =Z+E] = (u+1%3)+wo;
j=0,%1, £2, -+ , h = 27h.

[see Fig. 5(b)].

The accomplishment of the construction for 7' in
the reasonably general case of a bound-particle sys-
tem with time-independent potential energy, com-
pletes the desired demonstration that the function
®!(q) of definition (21) can, indeed, be interpreted

(39)

1 The disjointness condition is essential here only because
we have restricted the domain of T to be a subset of the com-
plex plane. As in the analysis for the continuous spectrum,
we could extend the domain of 7' to be three-dimensional
(one dimension corresponding to eigenvalues of the energy).
With such extended geometry, the disjointness condition can
be dropped. The geometric extension is suggested in Fig. 5(a).
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as a quantum mechanical wavefunction, at least
in certain cases. We have at the same time completed
the proofs of Theorems 1 and 2 as stated in the
introduction.

6. PHYSICAL INTERPRETATION OF
MICRO-MACRO TIME

The function 7', though it is a micro—macro func-
tion and has been used in such probabilistic calcula-
tions as conditional expectation, is best described
as a quantum mechanical representation of time.
It is important to observe the close relationship
between the structure of micro-macro time and the
wavefunction of the physical system under observa-
tion. It is also important to observe that 7, like
the functions L and @ which play the role of quantum
mechanical operators, is defined on a space of points.
Micro-macro time 7' is, thus, more like a quantum
mechanical operator than an independent real pa-
rameter. Its relation to the familiar independent
time parameter ¢ is given by (39) with v = ¢. The
value of micro-macro time 7 is determined, up to
a multiplicity, by the random selection of a point
w in 8§ and, consequently, 7" behaves like a random
variable. It is also true that the function 7' is
complex. Certain clarifications of these diverse char-
acteristics of 7" are necessary if the time interpreta-
tion of 7 is to be justified.

One is reminded at this point of remarks made
by von Neumann® in regard to the way that time
enters in ordinary quantum mechanics:

“Then how can our assumption of instantaneous
measurements be justified? First of all we must
admit that this objection points at an essential
weakness which is, in fact, the chief weakness of
quantum mechanics: its non-relativistic character,
which distinguishes the time ¢ from the three space
coordinates z, y, z, and presupposes an objective
simultaneity concept. In fact, while all other quanti-
ties (expecially those z, y, z closely connected with
t by the Lorentz transformation) are represented
by operators, there corresponds to the time an
ordinary number-parameter ¢, just as in classical
mechanics. ... It may be connected with this non-
relativistic character of quantum mechanics that
we can ignore the natural law of minimum duration
of the measurements. This might be a clarification,
but not a happy one!”

It is not out of keeping with von Neumann’s

2 J. von Neumann, Mathematical Foundation of Quantum
Mechanics (Princeton University Press, Princeton, New
Jersey, 1955).
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remarks to expect that a function such as 7', rather
than a parameter, could, indeed, represent time.
As is well known, von Neumann’s question concern-
ing instantaneous measurements is in part answered
by relativistic quantum theory, in which time is
more in the nature of an operator than a parameter.
We conclude that the micro—macro representation
of time is in some ways closer to the spirit of rela-
tivitic quantum theory than to nonrelativistic. It is
important, in this regard, to emphasize, however,
that physically realistic restrictions on miecro—macro
time have been imposed by the Schrédinger equation
and not by the relativistic Klein—Gordon equation.

Because we have found that 7 can be analytic
and at the same time serve in the construction of
the wavefunction according to the analysis (21),
the derivatives o/(z) appearing in the expansion of
the wavefunction can be taken along any path
through the point z in the range of 7. This, together
with the fact that there may (as in the case of the
harmonic oscillator) be a fixed line  + vy, — » <
% < o, common to the range of T(w) for w € 8,
n =12 .., suggest identifying the line u 4 7v,,
— oo < % < o, with the real time axis and justify
computing derivatives of the type «/(z) for points
2z = u -+ 1y, as derivatives with respect to the real
time parameter. Thus, while a geometric flavor has
been introduced into the interpretation of the wave-
function and its expansion coefficients by virtue of
the analyticity of 7', the familiar properties of the
wavefunction, in particular reference to its usual
dependence on time, have been preserved.

We are permitted, henceforth, to explore the
structure of T for physical interpretation, having
been assured that its properties as a micro—macro
function do not conflict with our preconceptions of
time as the independent parameter on which the
wavefunction depends.

Observe, first, that the sets S,, n = 1, 2, ---
are associated with distinet eigenstates and that,
without preconditioning the value of micro-macro
time, the same contingency that determines the
eigenstate of the system determines the value of
micro-macro time, up to a multiplicity. Such a
contingency is representable in our construction by
the selection of a point in 8. In fact, our geometry
which associates area in S with probability, permits
the language of random selection of a point in 8.
We are, thus, led to the physical interpretation that
an observation on a physical system is to be identi-
fied with a point selected at random in S. (The case
in which the space S is extended to the trajectory
space 2, is discussed in the next section.) In the
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absence of knowledge about the physical system,
we impose no restriction on the subset in S from
which a point is to be chosen. (We are phrasing
in the language of measure-theoretic probability the
usual postulate of quantum theory to the effect that,
prior to measurement, the wavefunction is a super-
position of eigenstates. In our case, the separate
eigenstates correspond to subsets S;, Sz, - -+, S, *

whose logical union comprises S.) Once a particular
point is chosen at random from S (that is, an
observation is made), one of the subsets S,, S,

-, 8, +-+ is occupied, namely, that one from
which the point was chosen. (We express in this
way the familiar postulate of quantum theory to
the effect that a measurement disturbs the system
by causing the wavefunction to change to an eigen-
state in an unpredictable way.)

We emphasize here that an observation on a
physical system is not assumed necessarily to be
conditioned on time having a preassigned instan-
taneous value. An unconditioned observation on a
physical system is interpreted, in the language of
micro—-macro functions, as determining a value (pos-
sibly unmeasurable with precision) for time, up to
a multiplicity, as well as values for physical measur-
ables such as energy. That is, we understand that
an observation is made on a space—time system. It
is in this sense that the relativistic character of the
present theory becomes apparent.

It may next be remarked from analysis (39) that
micro-macro time is multiple valued with spacing
h/E, between multiple values, depending upon the
energy state of the physical system, where A is
Planck’s constant. This spacing is significant for
small energy levels that are characteristic of the
micro-world and infinitesimal for high energy levels
of the macro-world. Thus, the characteristic that 7
assumes random values, determinable, up to a mul-
tiplicity, by the selection of a point in S, becomes
insignificant for observations in the macro-world.
In this sense, micro—macro time satisfies the cor-
respondence principle, its random character dis-
appearing in the large [see Fig. 5(b)].

Let us clarify the meaning of the multiple-valued-
ness and the spacings A/E, of micro—macro time.
These spacings h/E, must represent physically the
degree to which time, as it relates to an observation
on the system, is completely random. If we identify
an observation on the physical system with a
randomly selected point in S, and characterize the
result of this observation with an exact energy E,,
then h/E, must pertain to the uncertainty with
which the time of the observation can be known.
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We find a physical explanation for the spacings from
the uncertainty relation between time and energy
measurements. We refer to the restriction between
the uncertainty in parametric time Af{ and the un-
certainty in energy AE:

At AE 2 B, (40)

where & is Planck’s constant. This uncertainty rela-
tion can be inferred from the postulates of ordinary
quantum theory (and thus from the present model
also), though, unlike other uncertainty relations, it
is known to have a rigorous derivation only in
relativistic quantum mechanics. From (40) we read
that the interval of time over which a measurement
extends must be greater than A/E if any knowledge
whatsoever is to be obtained about the energy E—
that is, if it is not to be the case that AE > E.
In another sense, we can conclude from (40) that,
if a physical system is in a pure energy state E,
then time within an interval smaller than h/E is
completely random with respect to our measuring
devices, provided that the same measuring devices
are to be at all sensitive to the energy of the system.

Having given the spacings between multiple values
of micro-macro time some physical meaning based
on known quantum analysis, we give the following
heuristic interpretation: The real component of
micro—macro time, as a function of randomly chosen
points in S, has the structure of a ladder with rungs
placed at the multiple values of 7 and with spacing
h/E, between rungs depending on the energy of the
system under observation. The ladder is translated
with reference to each observation, so as to make
the exact position of a rung completely random
within an interval of length A/E,. To speak less
exactly, the ladder is vibrating erratically relative
to the space within which our observations are made,
so as to make no position of a given rung within
an interval of length A/E, a reference point for a
quantum mechanical measurement. For energies
large in comparison to Planck’s constant A, the rungs
of the ladder are extremely close together and permit
approximation by a real continuum, the continuum
of the familiar time domain.

While the random nature of micro-macro time
helps us avoid the dilemma of instantaneous meas-
urement, the unmeasurable fineness of the spacings
between multiple values may signal to the logical
positivist a meaningless structure. On the contrary,
it is from the detailed structure of micro-macro time
that we compute the probabilities and expectations
of quantum phenomena. Prior to any measurement
on a physical system, we may meaningfully speak



QUANTUM MECHANICAL TIME

of conditioning observation on an exact value of 7',
because, prior to any measurement, the origin of
time is arbitrary. By imposing the restriction 7 = z,
2 = t + 1w, on future observations and conceiving
of probability density of 7" as a differential concept
involving the derivatives of the inverses of 7, we
deduce the probability for a future measurement
to yield an eigenstate. We see from (19) that the
chance that a point arbitrarily chosen from S should
be chosen from S,, if T = z, is |&]|>. We see this
by setting L in (19) to be the characteristic function
of the set S,. (In the language of ordinary quantum
theory, an observation at time ¢ disturbs the system
by causing the wavefunction to change in an un-
predictable way to an eigenstate ¢, according to
the probability |a,|?, where a, is the coefficient in
the expansion of the undisturbed wavefunction.)
It is important to observe from the standpoint of
micro-macro time, that the probabilities |e|* derive
from a differential concept that takes explicit ad-
vantage of the local properties of 7' in the neighbor-
hood of a solution w, to T'(w) = z. The probabilities
derive from minute variations in 7 that may in
a physical sense be unobservable except through
the physical measurement of probabilities, them-
selves.

More generally, the conditional expectation (19),
which is identified with quantum mechanical ex-
pectation, relates directly to the detailed structure
of micro—macro time 7. Intuitively, one conceives
of the conditioning of micro—macro time to a fixed
value as a8 means of isolating a differentially small
subset in S, namely, the subset over which micro-
macro time assumes values in an infinitely small
neighborhood of the fixed value. Within the restric-
tions imposed by this subset in S, one then observes
an average of values assumed by a quantum me-
chanical measurable, such as the micro-macro func-
tion L of (19). The reasoning for quantum mechanical
expectation is seen to be identical to that for condi-
tional expectation in the measure-theoretic prob-
abilistic sense, provided only that time is viewed
as a micro-macro function on a space S.

7. OBSERVATIONS IN TRAJECTORY SPACE
AND SIMULTANEOUS MEASUREMENTS

In the last section, we confined our attention to
observations on a physical system that could be
identified with the random selection of a point in S.
Because 8 is partitioned into subsets S,, S, -+,
S,, +-- that we associate (through the physical re-
strictions of the Schrédinger equation) with energy
states, S is a natural space over which to define
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micro—macro functions L that are measurable with
respect to the smallest o-field including S,, S., - -+,
8., + -+ . The same space is, thus, the natural space
with which to associate operators that commute with
the energy operator. It is, of course, also a space
over which we may define micro-macro time. We
saw that the deduction of conditional expectations
of functions like L in Eq. (19), though they impose
a condition on micro-macro time, do not entail a
meaningless condition on 7. Where probabilistic
computations are specifically in reference to energy
eigenstates, we interpret that an a posterior: observa-
tion results in a state that is stationary in time and,
thus, prior to observation, the origin of time must
be arbitrary.

In contrast to observations relative to S, observa-
tions on a physical system that are expressible in
terms of the selection of points in trajectory space
2, are strikingly different. In order to clarify this
fact, we must first examine micro~macro time as
defined on Z, [see Fig. (6)].

The interpretation of definition (24), in the light
of assumption 7', reveals that the structure of
micro-macro time is very different as defined on
Z, and as defined on S. When 7T is defined on S
we discover the multiple values with spacing h/E,.
When T is defined on =, we discover the possibility
of a variety of behaviors depending upon the number
of eigenstates. In general, 7, as defined on Z,, is
multiple valued and the spacing between multiple
values is determined, in physical language, by the
superposition of eigenfunctions in the composition
of the wavefunction. The same multiple-valuedness
of T as defined on X, becomes reflected in the period-
icity in z of such functions as p(z, q) of (27). Here
we see in formal language the electrical oscillations
that are characteristic of mixed states.

It is important to emphasize once again that the
expectations conditioned on time are a differential
concept having to do with the detailed structure
of micro-macro time in a neighborhood of a specified
point. This is true, whether micro—macro time is
defined on S or on Z,. We discover in this way
that it is not meaningless to restrict selection of
points of =, by imposing a condition on micro-macro
time as defined on Z,. Questions having to do with
instantaneous measurement do not enter. Conse-
quently, while the reasoning of conditional expecta-
tion, given 7, remains the same as in the last
section, application of that reasoning to formulas
such as (28) result in truly time-dependent functions
for expectations and distributions, as is charac-
teristic of mixed eigenstates.
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In quantum theory, conjugate observables are
generally expressed in terms of noncommuting op-
erators. In the notation of micro—~macro functions,
we consider a transformation on L,-space that supple-
ments the correspondence (22) with

R (40)

according to

(2—7,1;5? f_ _B(QeTdg = 1.(p).  @41)
This Fourier transform takes the eigenfunctions ¢,(q)
of the orthonormal set {¢.(g)} into ¢,(p) of a new
orthonormal set {,.(p)} and gives us a new trajectory
space Ep = {(i)) p) 1= \I’z(p)) —o < P < @,
z in the range of T}. On Z, we define a new class
of micro-macro functions P in exact analogy to the
way we define @ on X, through definition (25). The
functions @ and P play the role of conjugate ob-
servables. These functions can represent the position
operator @ and the momentum operator P of or-
dinary quantum mechanics. Of course, the familiar
uncertainty relations could be derived for them. We
omit the details here which are the same as in
ordinary quantum mechanies.

Transformation (41) notably fails to give us a
point-to-point correspondence between the spaces
Z. and =, and, instead, gives a correspondence be-
tween trajectories. It is noticed that T’ can be defined
on Z,, through definition (24), or on Z,, through
a similar definition. That is, a condition on 7' char-
acterizes an ensemble of trajectories in =, and an
ensemble in Z,. We identify simultaneous measure-
ments on position and momentum of a particle with
the two selections, made at random, of a point in
2. and a point in Z,. We condition these selections
(as described in the last section) upon the corre-
sponding differentially small subspaces in 2, and Z,
over which micro-macro time assumes values in an
infinitely small neighborhood of a fixed time value.
The finer questions of the meaning of simultaneity,
like the questions relating to instantaneous measure-
ment, must be referred once again to the detailed
structure of miero—macro time, though they must
inevitably express themselves in terms of the known
uncertainty relations between conjugate observables.

Dynamically speaking, we can identify successive
L,-space points ®,,;,, or ¥,.,,,, considered as func-
tions of the real time parameter ¢, in much the same
way that we speak of the dynamics of the wave-
function. The chief distinction in concept, as it
derives from the present thinking, is concentrated
in the relation between the points in L,-space and
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the probability densities. Through the concepts of
micro—macro functions, probability densities are
derived from the local behavior of trajectories as
they depend on time. Probability densities asso-
ciated with @ or P derive from the idea of differenti-
ating the inverse of micro-macro time. In this way,
the operation of taking the absolute square of the
wavefunction has a geometric motivation, justified
by the properties of analytic functions and con-
sistent with the identification, as in (16), between
absolute values of ecrossproducts and absolute
squares.

8. SUMMARY

We have presented the outlines of a probabilistic
construction from which we are motivated to identify
observations on physical systems with the random
selection of points in topological spaces. The close
analogies between certain mathematical entities in
the construction and the entities of quantum me-
chanics lead us to make the entire construction con-
sistent with quantum mechanics. Details are carried
out by restricting our work to the one-dimensional
case in which the Hamiltonian generates a complete
class of orthonormal functions in L,-space. We are,
thus, led to a theory in which quantum mechanical
observables including energy, position, momentum,
and time, are represented as functions on topological
measure spaces. (We call these functions micro-
macro functions, as a modification of the random
variable concept.) Each observable, including time,
has a probability distribution. The conditional dis-
tributions and expectations of energy, position, and
momentum, conditioned on the event that micro-
macro time has a specific value, are identical with
the quantum mechanical distributions and expecta-
tions (within the generality of the case studied).
It appears that the most natural spaces to serve
as domains of definition for the energy and position
micro—macro functions are distinct, the energy and
position being representative of quantum mechanical
operators with discrete and continuous spectra, re-
spectively. The space on which the position function
is defined is a geometrical enrichment of the other.
The selection of points from these topological meas-
ure spaces determine values for energy and position,
as well as time. The spaces most natural for the
domains of definition of conjugate observables, such
as position and momentum, are also distinet and
are related through the Fourier transform in such
a way as to require the separate selection of a point
from each space in order to determine ‘“simulta-
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neous” values for position and momentum. The
conditional distributions of position, given micro—
macro time, and momentum, given micro—macro
time, possess the dispersion parameters (namely sta-
tistical variance) that satisfy the usual uncertainty
relations. Details of these latter facts were not
carried out.

Micro-macro time was studied at some length,
because of its unifying importance to the theory.
The way in which it enters in the theory appears
to be consistent with the spirit of relativity. The
multiple-valued structure of micro-macro time and
the spacings between multiple values were explained
(at least tentatively) in terms of the correspondence
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principle of quantum theory and the conjugate rela-
tion between energy and time that is characteristic
of relativistic quantum theory. We observe that
time, considered as a function on a topological space
in which points correspond to observations, has
strikingly different structure when the space is con-
sistent with observations on energy and when the
space is consistent with observations on position.

We have omitted from our present considerations
notably the questions having to do with the degree
of generality to which our probabilistic structure
can be extended and the extent to which the struc-
ture satisfies or conflicts with the requirements of
a hidden-variable theory of quantum mechanies.
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Proofs are presented showing impossibility of assigning differential operators (quantum observables)
to classical mechanical observables in such a way as to preserve the usual bracket formalism. Diffi-
culty is shown to arise even if we limit ourselves to preserving brackets between the Hamiltonian and
a rather limited set of observables. Some other algebraic difficulties inherent in the operator assign-

ment problem are also discussed.

1. INTRODUCTION

T is known that the set of dynamical variables @

for a (classical) mechanical system has in a
natural way a (real) Lie-algebra structure as well
as a squaring operation. Lie multiplication of two
dynamical variables is just their Poisson bracket
and the square of a dynamical variable is just the
square of the function representing the dynamical
variable.’ One of the principal objectives in quantiz-
ing a mechanical system is to find a natural “operator
assignment” map A from a subspace of € into the
real vector space ©,, of formally self-adjoint dif-
ferential operators on the configuration space of the
system in question.” Since D,, has a natural Lie

* This paper was prepared with the assistance of NSF
grants GP-2045 and GP-1988.

1 @ also has the structure of a commutative algebra, but
this is supposed not to pass over to quantum mechanics, and
is thus, except for the squaring, ignored.

2 We assume that the configuration space has a natural
measure on it, and ‘‘self-adjoint’’ is to be defined in terms of
it. We ask the coefficients of differential operators to be infi-
nitely differentiable. These operators thus determine sym-
metric operators in the Hilbert space of square summable
functions on configuration space, but we do not use this fact.

structure and squaring operation defined on it, it is
assumed that A preserves a reasonable amount of
the algebraic structure of the domain of 4.

In practical situations an operator assignment map
is assumed to exist, but to our knowledge none has
ever been given explicitly. The usual procedure is
to define A explicitly for a limited subset of € which
usually includes linear and angular momenta, total
energy and linear configuration observables. This
suffices for most applications but hardly reveals a
complete operator assignment procedure. It is our
purpose to give several examples which indicate the
domain of A must be, at most, a modest subset
of € if one hopes to have the quantum observables
(range of A) retain a reasonable amount of the
algebraic structure of the corresponding classical
observables.

We stress the algebraic aspect of the operator
assignment problem because we feel that the problem
of preserving brackets, etc., is mainly an algebraic
one and should be separated from typical Hilbert-
space problems of finding self-adjoint extensions, etc.
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Van Hove® proved a result similar to our Theorem
5.1. A result similar to our Theorem 3.1 was proved
by Groenewold.* Groenewold also stated a theorem
similar to our Theorem 4.5 but his proof is uncon-
vincing.®

2. WAVE-MECHANICAL OPERATOR
ASSIGNMENTS

Let n be an integer (usually 3, but often 1) and
let H be a function defined on R**, real Cartesian
space of dimension 2n. The pair (R*, H) is a Hamil-
tonian system with Hamiltonian function H, and is
the usual point of departure from classical mechanics
to wave mechanics.

As usual, we denote the Cartesian coordinates in
R*™ by (z', --- , 2", p1, -+, Pu), and call R*" phase
space. Configuration space here is R* and (z', --- , 2")
are used to denote the coordinates there. Functions
defined on R*" are (classical) dynamical variables,
and for two such variables, f, ¢ one defines

o= £ (290 oLar)

i=1 \dp; o’ @1

A (wave-mechanical) operator assignment A is a
rule which assigns differential operators on R" to
some of the dynamical variables.® If A assigns an
operator to the dynamical variable f, we denote this
operator by A(f) or when possible by Af. The class
of dynamical variables f for which Af is defined
shall be denoted by ‘“dom A.” We require that
(A, u being constant scalars) (2.2) for f and ¢ in
dom A one has Af + ugindom A, and AQ\f + ug) =
Af + pAg.

For differential operators F, ¢ on R" one can
define their commutator

[F, Gl = FG — GF. (2.3)

It is a fact that the customary wave-mechanical
operator assignment (denoted for the moment by A)
“preserves the bracket” in the sense that A{f, g}

3 L. Van Hove, Acad. Roy. Belg., Classe Sci. Mém. Coll.
in 8° 26, No. 6, 1-102 (1951). Van Hove’s results involve the
terms of Hilbert space theory, and therefore do not make the
algebraic nature of the problem as evident as we hope Theo-
rem VI does. A more recent account of these problems can be
found in T. F. Jordan and E. C. G. Sudarshan, Lie group
dynamieal formalism and the relation between quantum me-
E:hanics and classical mechanics, Rev. Mod. Phys. 33, 515

1961).

4 H) J. Groenewold, Physica 12, 405 (1946).

5 Groenewold says (Ref. 4, p. 449) that if 4 is a commu-
tative algebra and B is a linear image ring under a map which
preserves squares, then B is commutative. Professor P. C.
Curtis, Jr. has kindly shown us that this is not true in general;
and also that it is true for finite-dimensional semisimple rings.

¢ The relation A between dynamical variables and oper-
ators, may be regarded as a dictionary which assigns familiar
names to quantum observables.
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is proportional [Af, Ag], at least to a certain extent.
(It is this extent which we will explore.)

To put the matter quantitatively, we choose a
positive number 4, and define

D, = (h/i)3/dz’,
We modify (2.1) by defining a bracket

_ (8L 99
[f, 9] = ; (api D;g — ap; Dif)-
We shall now say that A preserves the bracket
[f, gl if Alf, g1 = [4f, Ag].
Our notation (2.4) has the advantage that neither
1 nor k appears explicitly. Nonetheless, this is the
identical substance of the familiar problem.
Let us give an example. Our Hamiltonian H shall
be the Hamiltonian for a free particle
L s~ )
2 (pi) .

i=1

i=1 - ,n

2.4)

(2.5)

We will define a specific operator assignment to be
called A,. The domain dom A, of our operator
assignment A, shall be all dynamical variables f
which are polynomials in p,, - - - , p, with coefficients
which are indefinitely differentiable functions of
z', -+, z". Because of (2.2), it will suffice to assign
operators to dynamical observables of the form
apTpy* «-- pr*. Using a notation to be explained
presently, we will define

Aolapy® -+ pa")
= (36p, + Rp,)™ --- (30p, + Rp)™a. (2.5a)

The expression appearing in front of ¢ is to be
multiplied out according to commutative algebra.
Then the terms are applied to the multiplication
operator a appearing on the right, as in the following
example:

cOp, -+ OpIR5 --- R

= ¢(D* -+ DFa)D¥ --- DI,

The rationale here is that 65, prefixed to a linear
differential operator F means the new operator ob-
tained by applying D; to each coefficient of F,
assuming that F is written in the usual way, with
coefficients on the left. Further, By, F means FD,.
(Thus 6 and B commute.) Later, we use also Lp,;,
where (L, FY() = D;(Fy). It is important to note
that

Ly, = 85, + Rp; (2.5b)
so that the L, 6, R symbols commute.
The term of highest order in (2.5a) isa D7 - - - D",
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We list a few specimens: 4,(a) = a,
Aolap;) = aD; + ¥(D;a), (2.5¢)
(36, + R)’a = (361 + 6.R, + R)a
i(D%a) + (D:a)D, + aDi, (2.5d)
where we abbreviate 8,, by 6,, etc., and
Aolap.p.) = (36, + R.)(G6: + Ri)a

= (16,0, + 360.R, 4+ 36,R, + R.R.)a

= }(D:D,a) + $(D1a)D,

+ i(D.a)D, + aD,D,. (2.5e)

The extent to which this A, preserves brackets
is indicated by the following.

Ao(api)

Theorem 1. For the operator assignment A, given
by (2.5a) and the Hamiltonian (2.5),

Ao((H, f]) = [4.H, A.f]. (2.6)

For f and ¢ whose degrees as polynomials in
Py, **, DP. have a sum at most two,

Ao(lf, g]) = [Af, Aogl.
But (2.7) does not always hold, since

Aola, bp] = [a, Ao(bp})] + 1b(Dia).

Proof. The assertions concerning (2.7) and (2.8)
are established by working out individually the
seven different cases that may occur, and we ask
the reader to accept them as valid. However, (2.6)
involves some technique, and a proof is now given.
It suffices to take

(2.7)

2.8)

f=ap* - pa".
Considering (2.5) and (2.4) we obtain
H,f] = ('E apIpt c Pat
where a; stands for D;a. Writing @; for 65, etc.,
as we did before, (2.51) yields
AoH, fl = Go + RB)™ ---
X G + B)™ 20 (46 + B)aj,

because (2.5a) says, briefly, that a factor 16, + R;
should be included in A,(f) for each occurrence of

(2.8a)

p; in f.
For the Hamiltonian itself we have
AJH) = % 2. D
Hence

AOU)AO(H) = (!5“01 + Rl)ml e
X (36, + R.)"} 3 Ria.
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This is true because R,a = aD;, ete., as explained
before. For A(H)Ao(f) we need to use L; which
is an abbreviation for Ly, since it means “put D;
in front of the operator” i.e., “apply the operator
and then apply D;.” Thus

Ao(H)Au(f) = (%01 + Rx)ml ce

X (36, + R)™} T La,
whence
[Ao(H), 4] = G6. + R)™ ---
Using (2.5b), we see that L? — R? = (L; + R,)9; =
(8; + 2R;)0;. Hence

3 Z (Lf - R?) = Z (36; + R))a;.

Inserting this into (2.8b), and comparing the latter
with (2.8a), establishes (2.6). Thus A, preserves all

brackets involving H, some brackets not involving
H, but not all brackets.

3. NO ASSIGNMENT PRESERVES
ALL BRACKETS

Theorem II. Let A be any wave-mechanical op-
erator assignment for the free particle with Hamil-
tonian (2.5). Suppose dom A4 contains all polynomials
in the p’s and the 2’s. Suppose that for every’ a,

A2 9, a) = [ Di, d] 3.1
and
A( X pi, ap)) = [20 Di, Alapy)]. (3.2)
Nevertheless, there are a and b for which
A([[Z D}, api], bpi)
# [A[ 2 pi, ap], Ap)). (3.3)

Proof. The assignment A, of 2.5a has properties
(3.1 and (3.2). et B = A — A, Then

B([Z P?, al) =0, (3.1a)

and
B((2_ P}, ap.)) = [2 Dj, Blapy)]. (3.2a)

Suppose a depends only on z'. Then (3.1a) says that
B(2p,a,) = 0 where a, = D,a. Every polynomial
depending only on z' is of the form @, so that
B(ap,) = 0 whenever a depends only on z'. There-
upon (3.2a) tells us that B(2p,a,p,) = 0 and we
conclude that B(ap}) = 0 whenever a depends only
on z'. Therefore, if = were true in (3.3), it would

7 Asimplied in the hypotheses, the a’s and b’s in (3.1)~(3.3)
are polynomials in the z’s. An analog of Theorem Il in which

ghe a’s and b’s are analytically different is treated later in
ec. 5.
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also be true that (as we shall suppose)
Ao([2p.ap,, bpi]) = [Ao(2paap,), Ao(bpy)], (3.3a)

wherever a and b depend only on z'. Whereas 4
was quite unknown, A4, is explicitly known. As the
reader may verify, the zeroth-order term for the
operator on the left of (3.32) is a;b11,+a1,6:,—3a41,:0.
On the right, it comes out a,b,,, + 3a.:b,, — 2a,11.b.
(Here a,, = D,a,, ete.) Thus (3.3a) is absurd, and
Theorem II is proved.

Remark. The term [ p?, ap,] in (3.3) shows that
no operstor assignment preserves brackets even if
we restrict its domain to the linear dynamical ob-
servables [compare (2.7)], plus those obtained from
these by bracketing with H.

We now consider a Hamiltonian of the form

H=329 +v, (3.4)
where v depends only on z', --- , z". Addition of
(2.6) and (2.8) shows that now, even brackets [H, f]
may not be preserved by A4,. Our next theorem shows
that the same is true for any operator assignment.
For simplicity, we consider only the one-dimensional
case, and write D for D,, z for z', etc. But D,a
we denote by a,.

Theorem III. Let A be a wave-mechanical op-
erator assignment for the one-dimensional system
with Hamiltonian H = 1p® 4+ ». Suppose dom A
contains all polynomials in the 2’s and p’s. Suppose
further that A(a) = a for each polynomial a depend-
ing only on z, and for each such q,

AP + v, ap") = BD° + v, A(ap")]  (3.58)

fork = 0, 1, 2, 3. Then the third derivative v"” of the
potential is zero.

Proof. First we define R,, --- , Rs by
Aylv, apk] = [y, Ao(apk)] + R,.
We can also write the equation
Ai3p°, ap*] = [3D°, Ao(ap®)).
From (2.8) weobtain B, = R, = R, = 0, R; = }av,,,.
From (3.5a) we obtain

Al3p®, ap'] — A(kav,p"™)

= [3D°, A(ap")] + v, A(ap")).
In this equation we let A = A, + B and use the
two preceding equations about 4,. The result is
Bl3p*, ap’] — kB(av,p*™") = [4D* + v, B(ap")] — R.,
so that
B(alpkﬂ) = kB(avlpk_l)

+ [3D* + v, B(ap*)] — R..  (3.5b)

R. ARENS AND D. BABBITT

Now B(a) = A(a) — A,(a) = 0. Thus (3.5b) written
down for & = 0 gives B(a,p) = 0. This implies
B(ap) = 0 for all a. Then (3.5b) for k = 1 gives
B(a,p®) = 0. This argument is repeated until k& = 3,
where we get B(a,p*) = — R;. Now we selecta = 1.
Then a, = 0 so that 0 = }v,;,. Thus v/ = 0.

This shows that only for the harmonic oscillator
and the falling body do you have preservation of
all brackets containing H.

4. PRESERVING SQUARING

Theorems I and IT show that for a free particle
(2.5), the operator assignment A, preserves brackets
as well as any other, and in particular those involving
H. But brackets are not the only things one likes
to see preserved: there is also the algebraic operation
of squaring. The impossibility of preserving both,
even though dom A is held down to polynomials
in z and p of degree not exceeding 4, is shown by
the following.

Theorem I'V. Let A be a wave-mechanical operator
assignment for the system (2.5) (n = 1). Suppose
2%, 2%, [H, 2%), [H, z°), and [H, [H, z*]] are in dom A.
Suppose

A(l3p, 3%, 21D = [5D°, [3D7, «']].
Then

(4.1)

A@BlEp’, 2°1) # 3[3D%, )" (4.2)
Proof. The 3 in (4.2) has been put in so that the
dynamieal variables in (4.1) and (4.2) upon which
A shall act are identical, namely, 12z 2°p°. But the
operators on the right emerge as 12z°2°D* +
242%xD + 6z} and 12222°D° + 24x%zD + 4t re-
spectively, thus proving Theorem IV.
Suppose we forget about preserving brackets, but
ask that A have the familiar form
Alap) = aD + i(Da).

Then squaring cannot be preserved, either.

(4.3)

Theorem V. Suppose A (for n=1) has the property
(4.3). Suppose z°p, (z° = z*)p, 2°p’, and (2* £ *)’p*
are in dom A. Then the following three relations
cannot all hold:

A@p") = (A& D)), (4.4a)
A + 2% = (A® + z9)p))?, (4.4b)
A(@® — 2% = (A(E" — z)p))°. (4.4c)

Proof. Subtracting (4.4¢) from (4.4b), and using
(4.4a) leads to the relation

2(4(=")p)" = A@@’p)A(a'p) + A('p)A(z"p).
But this is incompatible with (4.3).
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5. AN ANALYTIC VARIANT OF AN
EARLIER RESULT

It might still be hoped that we could find an
operator assignment A with the property that
Alf, g] = [Af, Ag] whenever the dynamical variables
f, g, and {f, g} all generate one-parameter groups
of contact transformations. The dynamical variables
treated in Sec. 3 do not generate one-parameter
groups of contact transformations in general. The
following theorem will show no such operator assign-
ment exists even if we restrict ourselves to dynamical
variables which are at most quadratic in the p’s.
Moreover, as in the previous results, the difficulty
will be of an algebraic nature and will have nothing
to do with Hilbert-space theory.

Theorem VI. There does not exist an operator
assignment A for the system (R*, 2(Q_%., p?)) with
the following properties:

(a) dom A contains all dynamical variables which
generate one-parameter groups of contact transform-
ations and are at most degree 2 in the p’s;

(b) if f(z', - - - , ") is an indefinitely differentiable
function on R” and {3X_7., 29, f@', -+ , 2"}
generates a one-parameter group of contact trans-
formations, then

A2 (Ew) e )]
B [%(Z D'i?), fa, - ,xﬂ)];

, ") is as in (b) and

(c) if f(@, - -~

G(ED & (&) o)

generate a one-parameter group of contact trans-
formations, then

LA g o]
T L g o]

(@ if f = Zi,k a:’k(xl; y T)PDE g =
> bi(@', -+, 2")p; and {f, g} generate one-param-
eter groups of contact transformations, then

Alf, 9] = [4f, Ag).

Proof. We first prove the theorem for the case
n = 1. Let 0 < ¢ < d and define

_ 1
z—d z-—¢

= O s

= exp if e<a<d

/()

otherwise,
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{ is indefinitely differentiable as is

ro = [ 10a/ [0

which has value 1 for 2 < ¢ and 0 for z > d. Let
d(z) = F(2®) and a(z) = a(x) — a(z — 2d*). Then
it is easy to verify that a(z) has the following
properties:

(1) a(z) is indefinitely differentiable and has com-
pact support;

(ii) if £ is such that a(Z) = 0, then da(£)/dz = 0
and d’a(£)/dz* = 0;

Gii) if £ is such that da(®)/dx = 0,
d’a(%)/dz® = 0;

(iv) [2. alz) dz = 0;

(v) (da/dz)d’*(a*)/dx* £ 0.

Properties (i)—(v) guarantee that

a@p® = {% "3 {% 7, f_ 2 f_ _aw) du dt}}, (5.12)
a*@p = {% 7 [ ao dt},

3a*(z) Z—z - p* = {alx)p’, o’(z)p}

_ {% 3 {% 7, f_ : a*(0) dt}} (3.10)

all generate one-parameter groups of contact trans-
formations. This follows on one hand from the fact
that C(z)p® generates a one-parameter group of con-
tact transformations if C'(z) is indefinitely differenti-
able with compaet support and has the property
that C(£) = 0 implies dC(£)/dx = 0 [which (i)—(iv)
guarantee for (5.1a) and (5.1¢)] and on the other
hand from the fact that C(zx)p generates a one-
parameter group of contact transformations if C is
indefinitely differentiable with compaet support
[which (i) guarantees for (5.1b)].

Now note that (5.1a, b, ¢) and conditions (a),
(b), (e¢) on the operator assignment A determine
A(a(2)p”), A(a’(2)p), and A[a(z)p’, a’(z)p]. and thus
a straightforward calculation gives

[A(a(2)p?), A(a’(x)p)]
= Ala(@)p’, &’ @)p] — 1a.(a")

and then (d) cannot hold by property (v) for a(z).
The proof for arbitrary = follows directly by
applying the above arguments to

then

(5.1b)

n n

= 2aCw, g¢= 2 a)p;

=1 i=1

and {g, f}. Then the theorem is proved.
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A functional peratization expansion is defined in the charged vector meson theory of weak inter-
actions. The simplest approximation is carried through and shown to yield an allowed lepton-lepton
scattering amplitude, properly damped on the light cone. A basic deficiency in this procedure is the
absence of any criteria for the estimation of the character and size of successive corrections.

I. INTRODUCTION

IGHER-ORDER corrections to the leptonic
weak interactions, mediated by charged W-
mesons of spin 1, using the technique of the so-
called peratization approximation to the ladder
approximation Bethe—Salpeter (BS) equation, have
recently been discussed by Feinberg and Pais.®s®
Their main result concerning the effective modifica-
tion of the one-boson-exchange scattering amplitude
at zero momentum transfer has been derived in an
alternate manner by Pwu and Wu,* and also by
Bég,® again in the approximation of considering
ladder graphs only. An essential part of these cal-
culations is the use of regularized propagators; all
iterations are performed in terms of these quantities,
and at the end of the calculation the regulator
masses are allowed to become infinite and finite
results are obtained. However, it was noticed by
Bardakei, Bolsterli, and Suura’ that, if the ladder
approximation iterations are performed in config-
uration space without prior regularization, the re-
sulting amplitude has an essential singularity on
the light cone which cannot be regularized away;
that is, regularization will permit a Fourier transform
to be defined, but in the limit of large regulator
masses, the essential singularity will again appear.
The purpose of this paper is to investigate, in
one special approximate way, the effect of all the
contributing ladder and crossed graphs on the
leptonic scattering amplitudes. It has been em-
phasized by Pwu and Wu’ that there is no reason
to consider the crossed graphs as less significant
than the ladder graphs; and it has long been known®

* Bupported, in part, by the U. 8. Atomic Energy Com-
mission,

1 E.E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232(1951).

2 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).

3 G. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964).

Y. Pwu and T. T. Wu, Phys. Rev. 133, B778 (1964).

& M. A. B. Bég, Ann Phys. (N. Y.) 27, 183 (1964).

¢ K. Bardakci, M. Bolsterli, and H. Suura, Phys. Rev.
133, B1273 (1964).

7Y. Pwu and T. T. Wu, Phys. Rev. 133, B1299 (1964).

8 R. P. Feynman, Phys. Rev. 76, 769 (1949).

that, for example, in a neutral vector meson theory
all graphs of each order must be included in order
to demonstrate gauge invariance. From the work
of Zumino®'*® it is clear that although configuration
space essential singularities do occur, they are can-
celed upon going to the momentum-space mass shell
of the amputated scattering amplitudes in gauge-
invariant theories; and conversely, such singulari-
ties—but without the delicate mass-shell cancella-
tions—may be anticipated in certain approximations
to non-gauge-invariant theories, and specifically in
the charged vector meson theory considered here.
The possibility of finding essential singularities upon
iterating the simplest crossed graph has been men-
tioned in a previous note''; in the language of the
BS equation, what is of importance here is the
light-cone behavior of the entire irreducible ampli-
tude, rather than the behavior of a finite-order
approximation thereof.

The aim here is to attempt a treatment of the
crossed graphs which isolates possible damping mech-
anisms corresponding to the summation of successive
terms from an infinite number of such graphs. For
this discussion, a damped amplitude is one which
does not contain an essential singularity on the
light cone, and a damping mechanism is understood
to mean a method of rearranging and summing
selected approximations to all the permitted Feyn-
man graphs which results in a damped amplitude.
Such damping is the main goal of this paper; but
it should be emphasized immediately that a discus-
sion so limited is unsatisfactory. Aside from the
simplifying approximations of neglecting self-energy,
vertex-type, and closed fermion loop structure, which
one cannot even begin to justify, the basic short-
coming is that there is no obvious way of guarantee-
ing that corrections to the damped amplitude ob-
tained here will (a) also be damped, and will (b)

® B. Zumino, J. Math. Phys. 1, 1 (1960).
10 B, Zumino, Nuovo Cimento 17, 547 (1960).
1 H, M. Fried, Phys. Rev. 133, B1562 (1964).
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possess Fourier transforms which, for certain values
of momentum transfer, for example, are of higher
order. Even if (a) is satisfied, it is easy to construct
examples which violate (b). The existence of sets
of damped amplitudes is in some sense the con-
figuration-space analog of momentum-space power
counting arguments,’”> where one sums the leading
divergent singularities of each order, the next-to-
leading singularities, and so on.

In spite of these inadequacies, this discussion may
be of some value in setting the stage for a more use-
ful study. It is possible to state the problem, at
various levels of approximation, in terms of cor-
responding graphical approximations to the complete
BS equation. However, it is considerably more con-
venient to employ a variant of Schwinger’s functional
techniques in order to enumerate, in succinct fashion,
all the Feynman graphs permitted by the selection
rules for each specific amplitude. Further, the func-
tional method has the advantage of permitting a
simple comparison with gauge-invariant theories,
and, indeed, of suggesting approximation schemes
based upon gauge techniques. The method employed
works directly with the functional expression for the
scattering amplitude, with a peratization'® expansion
given in terms of approximations to the basic fermion
Green’s function defined in the presence of an ex-
ternal, gradient source. Although there is no gauge
invariance in this problem, the gauge properties of
these Green’s functions are pertinent here; and one
has the strong feeling that further progress in this
subject is dependent upon a better application of
these gauge techniques.

The arrangement of these few remarks is as
follows. Section II contains the basic notation. The
peratization expansion is defined in Sec. III, where
the contribution of the simplest approximation to
the allowed lepton-lepton scattering amplitude is
computed. Corrections may easily be defined, al-
though their calculation may be more difficult, using
the same methods; but these are not considered in
this paper. Some miscellaneous comments concerning

12 Such as those introduced by T. D. Lee, Phys. Rev. 128,
899 (1962).

13 The definition of peratization really needs some clarifi-
cation. It is not proper to use this word to describe the con-
tributions obtained from the gradient part of the boson
propagator only, since many prior gauge-invariance argu-
ments have discussed just these terms; yet the latter hope-
fully provide the dominant effect when- the special gauge
cancellations are prevented by the selection rules. Peratization
is here used to specify that initial step of an approximation
procedure, suggested by the dominance of the boson propa-
gator’s gradient terms in those situations where one knows
beforehand that the latter do not cancel. Physically, the
approximation means that external momenta are neglected
compared to virtual momenta.
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these approximations, and some of the details, have
been put into a short Appendix.

II. FUNCTIONAL NOTATION, PAISOTOPICS,
AND THE BS EQUATION

The basic problem under consideration is the
scattering of a pair of leptons, say 4 and B, interact-
ing via the exchange of charged W-mesons.'® To
avoid clumsy symmetrization of the configuration
space amplitudes, A and B will always be considered
as distinet; that is, A will correspond to an electron
and/or its neutrino, and B to a muon and/or its
neutrino. The coordinates of A will always be des-
ignated by the subseript 1, while those of B shall
carry the subscript 2. All lepton masses are zero
and the W mass is M. Using a convenient p-spin
notation, the interaction Lagrangian may be written
in the form

L = (Gg/VI¥a.l +v)6-Wp. + o), ()

where

vo=)ow = ()

WP =@/ VW, - W], WP =0,

and where g is the coupling constant of Ref. 2; the
a; are the Pauli matrices. Under the approximation
of neglecting all leptonic closed loops, vertex-type,
and self-energy structure, the unamputated scat-
tering amplitude is defined functionally (Appendix
A) by

M(z; y) = Mz, T2.)

_ eDr[B/BJ,B/BJ’]GA(xlyl IJu)

X GB(xzyz IJE)[.I-J'nm (2)

where G4, 5 is the Green’s function of lepton A or
B in the external ¢-number field J{”(z), 7 = 1 and 2,

[7#6: - (’lg/ VE)Yu(l + 75)6‘],‘(17)]
X Gy |Ja) =@ —1y. ()

The functional differentiation operator D, is de-
fined by

5 8
D"[aJ’ aJ’]
E

2
: i 5
= "1f Z A — 2z5) 3T @) 8 (zy)" €Y

F=1

W = % W, + Wi,

* We single out the isotopic spin formalism useful in de-
scribing the purely leptonic weak interactions by assigning
to it the name ‘‘Paisotopic spin,” or p-spin.

15 The methods used here stem from the introduction of
charged vector meson fields in the basic interaction. An alter-
nate approach, in which these bosons appear as resonant
objects obtained from a Fermi interaction, has been outlined
by J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1964).
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where AY () = [8,, — M %3,9,])A¢(x) is the boson
propagator of mass M. It is not difficult to see that
the expansion of the exponential factor of (2) gen-
erates all the ladder and crossed graphs consistent
with the selection rules. The connected, amputated,
configuration-space scattering amplitude is denoted
by T'(z; y), and is related to M(z; y) by

M(z;y) = Sr(@: — 1) Sr(z: — ¥2)
t+ [ St — w)S2es — w)Tss0)

X Sz — y)Sr@: — ¥),

where the S;'? represent free-lepton propagators of
zero mass. The mass-shell Fourier transform of 7',
between the appropriate lepton spinors, is the cor-
responding S-matrix scattering amplitude.

Corresponding to the interaction (1), under the
restriction of charge conservation, the scattering
amplitude 7 may be separated into three paisotopic
amplitudes,

T(x;y) = PJT.(x;y) + P:T(z; y) + P.T.(z; y)

as noted in Ref. 11 and repeated here for complete-
ness. The “allowed” amplitude (e.g., for the process
e + v, > v, + u ) is denoted by 7,, and is rep-
resented in lowest order by the one-boson-exchange
graph; T'; denotes the ‘“forbidden” amplitude (e.g.,
¢ + v, — ¢ -+ »,) represented in lowest order by
a two-rung ladder graph; and T, denotes the ‘‘for-
bidden” amplitude (e.g., e~ + u~ — ¢ + u’)
represented in lowest order by the simplest crossed
graph. The operators P, ; . are given by

_ 1< A B
Pa - 2 j=laiaiv
P, = 31 — o%0%],
Pc = %[1 + 0’%0&],

and are linearly related to the three p-spin projection
operators P, , 5:

Plz%[Pf+Pn]) P2=%[Pf__Pa]v P3=Pc-

The relation of (2) to the conventional BS equa-
tion can be seen by amputating on the z, , coor-
dinates; this yields, with the aid of (3),

77.3? "lea:’M(x; y) = M(Zy,, 242

= 8z, — Yoz — ¥2)

2

= £ 3+ velaln( + 5o la

f.i7=1

H. M. FRIED

X T @) (22)G @iy, | T o) G (el T5) lo- ®)
The last term of (5) splits naturally into two parts:

'igz[’)’u(l + ) laly. (1 + vs)aA% (@, — )P . M(z; y)

2 2

5 2+ vedabn (1 el
no v 6

X f AF(xl - Zz)Ab):(xz — 21) m GA(xlyl ] J,,)
é

X m Gs(x2.7/2 ] Jx,i)[o (6)

In the second term of (6) are included these graphs
containing at least one pair of crossed internal lines,
among which are all the irreducible crossed graphs;
it is evident that the use of only the first term of (6),
in (5), generates the coupled ladder graph BS equa-
tions for T, and T; (written for the partially am-
putated amplitudes) of Ref. 2.

III. THE PERATIZATION APPROXIMATION

A functional peratization method is now applied
to the basic amplitude (2). We first write the func-
tional differential operator D;[5/8J, §/8J°] in the
form Dy = D} - D} where D} is obtained from
the §,, part of the boson propagator in (4), and
D% is the contribution of the gradient portion. The
unamputated amplitude is then written in the form

M(z;y) = €7 """ Gu(xyy | JGa(xays | JDlo,  (7)

and (7) is expanded in powers of D}. Thus M =

®_o M™, where the superscript n refers to the
number of “§,, boson lines” exchanged. The object
here is to define an expansion in powers of that
part of the coupling associated with the conven-
tionally renormalizable part of the interaction, and
simultaneously, to sum over all terms associated
with the nonrenormalizable part of the interaction.
By extracting contributions from all graphs in this
way, one hopes to construct a set of amplitudes each
of which is well damped on the light cone.

We calculate here only M‘” (or rather, its first
approximation, defined below),

iw(m(x; y) = GA(xlyllaaA)GB(x2y2 |J5) l01 8
where

. S 5
AP@) = —Mla f 07 Ap(e, — 2,) EVASIPAY )

and it is now necessary to evaluate G(zy | 9.A).
Because of the everpresent Paisotopic factors, this
problem, trivial in a gauge-invariant theory, is quite



FUNCTIONAL EXPANSION

impossible here, and a further set of approximations
must be developed.

The method adopted consists of a peratization
approximation to the lepton Green’s functions de-
fined in the presence of an external gradient source,
as in (9). One defines a sequence of approximations
to Glzy | 9.A), say G = X o_o G, which can be
inserted term by term into (8) and the functional
operations performed explicitly. The only qualifica-
tion is that certain functions, for particular values
of their arguments, will have to be considered as
continuations of the explicitly obtained functions;
this situation is familiar from the work of Ref. 2.
In the place of (7) and (8) one then writes

i M(um) — E (DF’)

n,m=0 n,m=0

(M)(-’Cx?ll ]A)Gg(x2y2 [ I o, (10)

and in partxcular, we consider here only the simplest
term,

M (z; ) = GO @y | A)Gs(@ays | I (11)

With such an expansion procedure, the corresponding
amputated functions 7™ (z; y) are related to the
M (z; y) by

M(M)(x; y) = S;(xl - yl)Sg(xz -

M=

Y2) Oaodmo
+ [ st - wSHe, — w)T50)

X 87 — y)Sr@. — Ya)- (12)
The expansion used here may be defined starting
from the integral form of (3),

Gley 1 0.4) = Sple — 4) + i [ Spla — )

X [8:7.0.AR)]G(y | 0.4),
a = (g/v2)1 + o).

Performing an integration by parts on the last term
of (3b), the result may be written in the form

(3a)

Gilzy | 8.A) = Sp@ — 3) — iax f Sl@ — 2)

X [8-A@},8.G\(y | 3.A)
+ ta\[6-A@ G2y | 9.4),  (13)

where the desired Green’s function is then given
by G[» = 1]. If the solution to (13) is expanded
in powers of A,

GX — Z )\mG(m)’

m=0
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one will be performing, in momentum space, the
approximation of neglecting external (¢) compared
to virtual (k) momenta in the integral equation for
the partially amputated function. The lowest-order
approximation takes the familiar form v-k[y-k —
v-q]”' & 1, and generates

7.0:G % (xy | A) = GV @y |A)
= {1 4+ tad-Ax)] '8z — ). (14)

Using the adjoint form of (3) to extract the dis-
connected part of the amplitude, one has

M(oo)(x; Y — S;(xl - yl)Sg(x2 ~ Ya)

L1+ s [ 6P | D6 AG)

X Gu(@ys | Ih) o~ Seler — w1), (15)
or, in terms of the amputated amplitude,
T 9) = =i (9/V2(L — 754G @y | A)

X (84740 AW)]Gs(E:F: | IR o (16)

Inserting (14) into (16), one obtains
Tz;y) = =1 (g/VDr(l + v5)ladlx: — )
X [1 + igv28,4-A(zy)]™
X (84:00A@)Ge(@: | Do (17)

No further approximation is required for the evalua-
tion of (17); this is carried out in Appendix C, where
the result is shown to be

T = 7O - g,
T (@) = B'@I(f(z"). (18)

Here, B°(z) denotes the gradient portion of the 6ne-
boson-exchange graph,

Bi(z) = —i(j%)z

X [’Yn(l + ’Ys)]A [’Yv(l + 75)]B'6MarAF(x)v (19)
and
_ %f:f: dt dne~ V(1 4 cosh (2féhh)]
=3+ 3@, (20

where f(z°) = i(29/M)*Ar(z). The Fourier trans-
form of (18), between lepton spinors, represents the
mass-shell scattering amplitude, and is, in this ap-
proximation, a function of momentum transfer only.
From (20) one sees that only “half” of the gradient
part of the one-boson-exchange term is affected.
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The integral (20) exists and may be immediately
evaluated when —1 < Re f < 1, and the definition
of J(f), for arbitrary f, shall be taken as the cor-
responding continuation of the result of this in-
tegration. For this, we note that the continuation
of J(f) corresponding to large and real values of f
vanishes according as'® J(f) ~ f* In [f|, providing
an explicit example of light-cone damping.

Application of the heuristic argument in the Ap-
pendix of Ref. 2, which may be expected to be valid
in the absence of essential singularities, shows that
the n-factor appropriate to this approximation is
n = 3} instead of the 1 of Ref. 2; this is because
of the peculiar decomposition of (20), where the
damping occurs for J(f) rather than for I(f). The
actual » value resulting from any such finite number
of approximations may, of course, bear little relation
to the factor defined by the infinite sequence of
approximations which have not yet been considered.

IV. SUMMARY

While it is satisfying that the functional peratiza-
tion method employed leads, in simplest approxima-
tion, to a damped amplitude, emphasis must again
be placed upon the basic deficiency of all calcula-
tional methods, here and elsewhere, thus far pro-
posed: one has no a priori way of estimating cor-
rections.
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APPENDIX A

The derivation of (2) from Schwinger’s functional
solution to the field equations will be briefly sketched
here, using a simplified example of a scalar interac-
tion, L' = gywy; in this way, the decomposition
of the vector boson field into transverse and longi-
tudinal parts, which is not relevant to the particular
approximate result desired here, may be bypassed.
The generating functional, from which all the un-
renormalized and unamputated n-point Green’s func-
tions are constructed by functional differentiation,
is given by

16 Similar damping can be constructed for the allowed
amplitude if one merely multiples the g2* peratized n-rung
ladder graph contribution of Ref. 2 by the number of graphs
permitted in that order, and sums over all odd n. I am in-
debted to Professor A. Pais for some correspondence on this

point. Identical results can be obtained from a meodified
Bloch-Nordsieck functional model.

H. M. FRIED

. (E'l, ) (_1_(_5_:_6_)
Z[ns 7, ]] - €Xp ]AF] exp 2 8J AF 57/

- exp L[J] - exp (#5G[J]n),  (Al)

where N is a normalization constant, J(z) =
[ Ap(z — 2)j(@"), and L = —Tr In [GIJ]-G"H{O]]
represents the closed loop dependence. We are not.
interested in external W-lines (hence j — 0), and
all closed fermion loops are to be neglected (L — 0,
N — 1). The scattering of two identical fermions
is then given by

- i 8 a)

X Gy, | NG (@2y2 | ) om0, (A2)

where D_2_, denotes a sum on the two permutations
of coordinate pairs. If we are dealing with two
distinguishable particles, say 4 and B, the permuta-
tion sum may be omitted,

) )
M(z;y) = exp (— §Za_JA” ﬁ)

X Gu@n | NGa@ys | Do, (A3)
or
= [on (- 430 )
X exp (— i% Ap —g;)
x[ew(-iZar e @0

All the lepton self-energy and vertex-type structure
is generated by the exponential operators inside the
square brackets of (A4), and the neglect of this
structure then provides the simple amplitude,

.8 3
M(z;y) = Gulzy | J) exp <_ z‘éj Ap 37)

X GB(-’Czyz | J)’o- (A5>

The replacement of J by J,, and A by A% in (A5),
produces (2). We follow Ref. 2 in using the symbol
Ap; this function has also been called A..

APPENDIX B

In a hypothetical neutral vector meson theory
of weak interactions, one could write
o

a; 7.0 Gy | Jo) = —ig(l + 7vs)

X [8(z —2) — oy — Gy | J), (BD
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in obvious analogy to Zumino’s equation in electro-
dynamics, and this could then be immediately used
to extract all the dependence coming from the
gradient portion of the boson propagator. The cor-
responding gauge statement here is more compli-
cated, but does merit a brief discussion. One may
first consider the Dirac equation in the presence
of an arbitrary, external, c-number source, J,. Solu-
tions to the equation

s — i(g/v2)7.(1 + 758 Ju()]
Xy¢@|J)=0 (B2

possess the following gauge property: under the
transformation

Ju(@) — xu(2) + 20,A(2), (B3)

where ¢ is a constant Paisotopic vector, A(z) a
Lorentz and Paisotopic scalar,

Y(x | xa + £9.4)

= exp [i(g/V2)(1 + v)é-eA@Y(@ | Jo).  (BY)

The compatibility of (B1), (B2), (B3) provides the
definition of x,; it must be chosen such that

6%, = exp [i(g/V2)(1 + v5)é-eA(2)]8- Ju()

X exp [— i(g/V2)(1 + v5)8-eA@)],  (BS)
or
Lu = [Ju - s(‘:'J.M)/sz]
X cos (V2g(1 + v5)AE")})
o) L
X sin [V2g(1 + v)AE)'].  (B6)

The gauge property (B4) is reproduced in the
corresponding lepton Green’s function,

G(xy | xa + e3.4A)
= exp [i(g/V2)(1 + v5)6-eA(@)]G(xy | J.)

X exp [— i(g/v2)(1 — v5)é-2A®)]. &
Using the relation
ﬁ: “ fs)fi(‘)gizi = 8,8( — 2),
it follows that
e [8/8],(2)1G(zy | xa + €3.A)
= e [8/0x.)G(zy | xa + 29.4),  (BY)
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and with (B8), the 4-divergence of the functional de-
rivative of (B7) then gives

e [8:8/6].D1G(xy | ko + e9aA)
—[8/0A@))G(zy | ko + 29.4)

- 5 _ P @) 8
- _[ 3A @) f %54 6xu(z’>]
X Gzy | o + 20.4), (B9)

where 9/dA(z) denotes differentiation of only the
explicit A dependence, not the implicit A dependence
of x.. From (B6) there follows

8%,/ 5A() | a0
= v29(1 + v5) 8@ — 2)(J.() x #),

which, when substituted into (B9), provides the
relation

. 8
e, .0 Gy | J.)

= —[8/8A@1G @y | xa + €3ah)|sm0
= V2g(1 + v)e- (@) x 8/8].@)G(y | Jo). (B1O)

The first term on the right side of (B10) may be
evaluated using (B7), and the result, for arbitrary
g, is

0:18/8J.°@0(ay | Jo) = —i(g/V2( + v5)
X {8(x — 2)o.G(xy | Jo) — 8@z — »)Q(zy | Jo)oi}

+ V(L 1) 3 e @) sz Gy | 1),
(B11)

which is the appropriate generalization of (B1).

The derivation of (B11) is most easily obtained
from (3), and the adjoint form of (3), but the method
used here serves to illustrate the underlying gauge
structure. The arithmetical reason for the relative
complexity of (B11) is, of course, the noncommutiv-
ity of the Pauli matrices; the physical reason is the
existence of charge conservation selection rules which
remove certain graphs and prevent those which re-
main from all being added coherently."”

APPENDIX C

The evaluation of T°” proceeds as follows. The
damping denominator of (17) is rationalized and put
into exponential form with the aid of the rep-

17 This discussion is essentially a zero-lepton-mass version
of general arguments given by C. N. Yang and R. I. Mills,
Phys. Rev. 96, 191 (1954).
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resentation

(1 + ©v2g6,-A(z)]™

= %ﬂmdse—t
X /_/;:ada, da, [1 - (i’/.gu]

X exp [— (o} + o) + 2ig(28)'e- A(z)],

(&)

where @ = (a;, @) and A(z,) = (A (z,), A9 (z,))
is given by (9). The combination

Z oS00 A (2)Ga(Ee | J7)
i8, using
[8/67,"(D]G(xy | T.)

= i(g/V2)(L + 75)G(az | J)moiGley | Ja),
replaced by

> it [ araan — =)

=1

9
\/QMZ (1 + ‘Ys)s

X Gu(E2 | J)Vo0Gseadrz | I, (C2)
and the Jj dependence of (C2) is translated by the
operator

exp [209(28) e A ()]
_ 2028* [ .. 5
= €xp l: M;g f B,Ap(xl - z)a' 6];(2)]-

In the limit J; — 0, one has then effectively replaced
the J} dependence according to the relation

2g(26)*

TME 0;Ap(x, — 2)a = @d;$(2),

J@ — (C3)

where we have suppressed the z, dependence of ¢.
But, as is clear from the work of Appendix B, the

lepton Green’s functions are trivial in the presence

of a source such as that (C3),
Glzy | adgp) = exp [i(g/V2)(1 + v5) 6+ ag(2)]
X Sr(z — y) exp [~ i(g/V2)(1 ~ vi)8 (1)), (C4)

where (C4) involves, of course, only the difference
o(z) — ¢(y). Hence the functionally translated
product of the two partially amputated Green’s
functions of (C2) is given as

'yﬁ(?:'{exp [4i(gz/M2)EiAF(x1 - xz)ds'“]sg(xz — 2)
X exp [— 4i(g°/ M) Ar(z: — 2)65- 0]y 0]

H. M. FRIED

X exp [4i(g°/M)E Ar(z, — 2,)65-]S7(z — )
X exp [~ 4i(g"/M)E Ar(@: — y2)ds-e]}¥0)", (C5)
where the exponential (1 + ;) factors have been
replaced by 2. From Zumino’s work we again expect
the mass-shell contribution of (C5) to be that of
— 8(z2 — 2,)0(e; — yz)'y'f

X exp [— 4i(g*/ M) 65+ alhp(z, — 2)]o

X exp [4i(g*/ M) et 65 ahe(z, ~ 2,)], (C6)

and the Paisotopic dependence of (C6) can easily
be reduced,

%% be %" = [d'b _ (d'a)ga'b)]
a

X cosh (2a) + (—dj%ga—'b)

sinh (2a)

+ ié-(a x b) = [a*]}

as used in Appendix B.

Putting all of these factors together, and separat-
ing T into its three Paisotopic amplitudes, one
finds that the 7{°? contributions vanish, while the
allowed amplitude receives the contribution

T.(z; y) = i(¢"/ M) v(l + va)lalvo(l + v5)la
X 8@ — y)éx: — y2)
X I(f(@ — 25))- 059, Ar(@ — 25). (o))

In momentum space, (C7) leads to a function of
momentum transfer given by the Fourier transform
of (18). A representation for J(f) = 2I(f) — 1 is

1 @
J(§f) = f v [1 — vz]'*f u du e cosh (wf),

0 0

(C8)
which is valid only in the strip —1 < Re f < 1.
Near the light cone, on the other hand,
f~—(g/mM)*(* — zp)™".

Since in this limit § ~ e, J(f) is here defined

by the approprate continuation of the explicit (C8)
integration. The latter is

Jf)y =1 — £+ [ - 11t
X tan” ([f* — 117}, (C9)

and the continuation of (C9) into the light-cone
region of f leads to the damping quoted in the text.
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It is shown for boson systems with periodic boundary conditions that the existence of generalized
Bose condensation, of which the simple type typified by the ideal Bose gas is a special case, is equiva-
lent to the existence of off-diagonal long-range order (ODLRO) in the single-particle density matrix
p1 provided that the two noncomuting limits involved in the criterion for ODLRO are taken in the
proper order: first size of system — o, then interparticle separation — «. It is shown by means of an
example that certain assumptions concerning the behavior of the single-particle momentum distri-
bution function involved in proving this equivalence are actually satisfied in thermal equilibrium for
some dynamical models. The analysis is generalized to box-enclosure boundary conditions by an
extension of an argument due to Schafroth, according to which box-enclosure conditions are equiva-
lent to homogeneous Neumann conditions except for a thermodynamically negligible surface effect,
provided that one second-quantizes with respect to Hartree—Fock orbitals rather than free-particle
orbitals. A general criterion for generalized Bose condensation in terms of eigenvalues of p; is pro-
posed. On the basis of the behavior of soluble models it is conjectured that for a boson system in
thermal equilibrium subject to arbitrary boundary conditions, the existence of such Bose conden-
sation is equivalent to the existence of ODLRO in p,. The two-particle density matrix p, is discussed
briefly. By means of a simplified model it is shown that for a Bose system generalized condensation
implies large eigenvalues of p2 and ODLRO of ps, just as for p;. It is pointed out that the question of the
existence or nonexistence of generalized Bose condensation of fermion pairs ought to be investigated.
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1. INTRODUCTION

HE concept of off-diagonal long-range order

(ODLRO) was invented by Penrose' in 1951
in an attempt to explain the anomalous hydro-
dynamics of helium II, extended by Penrose and
Onsager’ in 1956, and recently given a general
formulation and generalization by Yang® as a criter-
ion for both superfluidity and superconductivity.
We wish here to discuss one aspect of this concept,
in particular the relationship between ODLRO and
Bose-Einstein condensation. We shall show that the
criterion for ODLRO is compatible with Bose-Ein-
stein condensation of a more general form than the
simple type typified by the ideal Bose gas.

2. DEFINITION OF ODLRO

The coordinate representative of the single-par-
ticle density operator p, of a system of N identical
bosons is defined in the thermal-equilibrium case as

(=] py [¥) = Tr Y@y E)], 1

where p is the normalized canonical density op-
erator, ¢ and y' are the usual Bose field operators,
and the trace runs over a complete set of N-par-
ticle states. An equivalent definition in the Schro-

* Supported in part by the Public Health Service (GM
09153-03).

1 Q. Penrose, Phil, Mag. 42, 1373 (1951).

2 0. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956),
in particular Sec. 4.

3 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962) and J. Math.
Phys. 4, 418 (1963). Also J. S. Bell, Phys. Letters 2, 116 (1962).

dinger representation is
N -
x| ) = 7 26

X f Ya(xX, -+ XN)PEE'R, - - d’ry,

2
where ¢, and E, are the energy eigenfunctions and

eigenvalues, and Z is the partition function ), ¢ #%=.
We define ODLRO to be present in p, if and only if

lim therm (x |p,| x’) = 0 3)

XN) dxg ..

lim
Ix=x' |
where “lim therm” means ‘“thermodynamic limit”’
and is defined for any function of N, the number
of particles, and €, the volume of the system, by

lim therm f(N, Q) = Ilvim N, @
(N/Q)Z_;T’0<p<w
if this limit exists. The precise meaning of (3) is as
follows: If the prescribed double limit of (x| p, [x’)
exists and is equal to zero, then ODLRO is not
present; if the limit exists and is not zero or if it
does not exist,* then ODLRO 1is present.

The operation lim therm is not explicit in the
definitions given by Penrose and Onsager''®> and
Yang.® Nevertheless, it is implicit in their applica-
tions of the definition, as is shown by the fact that

* This case is relevant to Bose-Einstein condensation into
a single-particle state of nonzero and macroscopic momentum.
We assume, however, that the thermodynamic limit of
(X |py| x') does exist (before letting |x — x| - »).
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for a system with periodic boundary conditions,
(x| py |x’) is necessarily triply periodic in both x
and x’ with periods equal to the edges of the period-
icity cube @; inclusion of the operation lim therm
is necessary to remove the boundary-condition ef-
fects. It is furthermore clear that the order of the
limits in (3) is crucial. If they are interchanged,
the double limit never exists for periodic boundary
conditions, and is always zero for box-enclosure
boundary conditions. If the limits are taken in the
order (3) it is easy to show® that an ideal Bose gas
possesses ODLRO below its condensation temper-
ature T, but no ODLRO above T..
3. EQUIVALENCE OF ODLRO AND
GENERALIZED BOSE CONDENSATION

Penrose and Onsager'® and Yang® showed that
if p, possesses an eigenvalue of order N, as in the
case of the ideal Bose gas below T,, then ODLRO
is necessarily present. However, we shall show that
the converse is not true: ODLRO is possible even
when p, has no eigenvalue of order N, although a
more general type of Bose condensation must still
be present. To this end, consider the case of periodic
boundary conditions. Then p, is diagonal in momen-
tum representation, so that

& ol %) = 97 T mae™ =,
k

nx = (& |p] &) = Tr{axmax). (5b)

Suppose the dependence of n, on N and Q to be
such that’

lim lim therm @' > n, = p. > 0, (6)

ko—0 k<ko
lim therm n, = 9Ek) < », k= 0.
Breaking the sum (5) into two parts, one then has’

S 5 %e, e.g., C. N. Yang, Rev. Mod. Phys. 34, 694 (1962),
ec. 13.

¢ The precise meaning of the second line of (6) is as fol-
lows: Let k be any fixed nonzero momentum vector. There
are several allowed (by periodic boundary conditions) mo-
mentum vectors within a distance 2r2y~%3 from k, for each
fixed value of N, where Qy = N/p with p the mean particle-
number density. Pick one such vector qy(k). Then we re-
quire that the limit

limN_,m Ney(k) = E)”L(k) <

exist and that it be independent of the particular choice of
the sequence {qy(k)}, alf)such sequences having k as limit.
In general the function ngy, will depend on N not only ex-
plicitly via qu, but will also have an implicit dependence
on N, and also on @ = N/p because of the boundary con-
ditions.

7 We assume that the approach of ng to its limit (k)
[second line of (6)] is uniform in the domain & > k,; it then
follows that

lim therm @' % mue'™ "
k>ko
— (27'_)—3 fk>k° fyl(k)eik’(x-—x’) d3k

provided that the limit function 9i(k) is integrable in this
domain, which we also assume.

(5a)

M. D. GIRARDEAU

lim therm {x |p,| x’)

= lim therm Q7' D nye'™ ="
k<ko

+ @) f W d%. ()

Since the left side of (7) is independent of k,, and
k, is independent of N and @, one finds® on letting
ko— 0

lim therm (x o X'} = o, + (x |pl] X),
& lofl ) = @0 P [ @e™ = %, (@)

where P denotes the principal value of the integral,
evaluated by excluding a sphere of radius k, about
the origin and letting &, — 0.° If the limit function
(k) is sufficiently well behaved in the neighborhood
of k = 0, eg., if it is spherically symmetric and
of order ¥™ with p < 3, then (x| p’ |¥’) will vanish
as [x — x| — «, and one will have

lim lim therm {x |p,]| x’) = p. > 0. )

|x—x'|>®
Thus the eriterion (3) for ODLRO will be satisfied.
Although the case of simple Bose condensation
[ne = O(N) and ny = 0(1) for k 5 0] is the simplest
way of satisfying (5), it is not the only way. The
top Eq. (5) is just the criterion for generalized Bose
condensation'®; it states, crudely speaking, that a
nonzero fraction of the total number of particles
in the system have momenta less than any macro-
scopic momentum. We conclude, therefore, that the
existence of generalized Bose condensation (which
includes simple Bose condensation as a special case)
implies the existence of ODLRO in p, provided that

8 In order to see that
lim lim therm Q7 Z nge' 5T = o,
ko—0 k<ko

note that for k¥ < ko, one has by an elementary geometrical
argument

X = 1 4 Ru(x — X)),
Re(x — X)| £ [ke(x — X)| < ko [x — x'}].
Thus
lim therm ' Y nye'™ ™

k<keo

= [1 + ®ko, x — ¥)] lim therm Q" >
k<ko
|®R(ko, x — )| < ko [x — x'].

On taking the limit ko — 0, the contribution from the term
proportional to & vanishes provided that the limit in the top
line of (6) exists, so that the desired result follows immediately.
9 In most cases the limit funetion 9t(k) will be such that
the principal-value operation may be omitted without chang-

ing the value of the integral.
10 M. Girardeau, Phys. Fluids 5, 1468 (1962), Eq. (48) ff.



BOSE-EINSTEIN

certain assumptions concerning the behavior of 7y
in the thermodynamie limit are satisfied.

This relationship is strengthened by the observa-
tion that the converse is also true: ODLRO implies
generalized Bose condensation, provided that the
eriterion for ODLRO is taken to be (9), rather than
the more general criterion (3). As a matter of fact,
the only obvious motivation for the more general
criterion (3) is to allow treatment of simple or gen-
eralized condensation at q # 0, in which case the
thermodynamic limit of (x| p, |x’) behaves like
p.e’ V™ ™) as |x — x| — «; however, this case
can be reduced to the case of ¢ = 0 [to which (9)
applies] by a Galilean transformation. We thus
assume the existence of the limit function 9(k) in
the second line of (6) for £ > 0. We furthermore
assume the existence of the limit

p, = lim lim therm @' > ny,

ko—0 k<ko

(10)

but we do not assume initially that p, > 0, since
this is what we wish to prove. Then, retracing the
previous derivation, one concludes’ ® that

lim

{x~x’ | >

lim therm (x |p,| X’) = p,. (1)
But at this stage we may assume p, > 0, since (9)
(existence of ODLRO) is satisfied by hypothesis.
Then by (10) one concludes that the criterion (6)
for generalized Bose condensation is indeed satisfied.

4. A SIMPLE EXAMPLE

In order to see that there exist model many-boson
systems for which the assumptions in the previous
section concerning the behavior of ny in the thermo-
dynamic limit are actually realized, consider the
Hamiltonian''

t — t ot
H = ; 1 Kaxax + 2rQ7'a D, duyay 0

kk’

— [ ¢ t
+ 2rQ la Z Ay Ay Aye -

kk’

(12)

This is obtained from the full Hamiltonian' of a
boson system with pairwise interactions by replacing
the interaction in k space by 4wra, where a is the
two-body scattering length at zero energy,'® and
retaining only diagonal terms in the interaction
Hamiltonian. The first Ekk, represents the forward-

11 The zero-temperature properties of this model were
discussed previously: M. Girardeau, Boeing Scientific Re-
search Laboratories Document D1-82-0119 (June 1961). We
repeat the analysis here for completeness.

12 We use units such that # = m = 1.

1 This is the Fermi pseudopotential approximation, which
is sufficient if one wants results correct only to first order
in a; we shall limit ourselves here to this approximation.
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scattering terms, obtained by choosing momentum
transfer ¢ = 0 in the general interaction term
af‘ﬂa;,_qak,ak while Y 4, represents exchange scat-
tering, arising from terms with q = k’ — k, with
k = k' since the k = k’ terms are already included
in the forward scattering. Using the Bose commuta-
tion relations, one can rewrite (12) as a function only
of the occupation-number operators Ny = agay.
Noting that the first Zkk, can then be replaced
by its eigenvalue N(N — 1) when acting on eigen-
states of the total-particle-number operator Zk N,
with eigenvalue N, one finds

H = 2r(N — Dpa + 2 3 KNy
k

+ 2707 Z’ NNy,

klk’

(13)

provided that we restrict ourselves to N-particle
states; here p = N/Q, the mean particle-number
density.

If o is positive then it is trivial to show that
the N-particle ground state of H has N, = N and
Ny = 0,k # 0, i.e., complete simple Bose condensa-
tion; the ground-state energy is then 27(N — 1)pa.
Let us consider, however, the case « < 0. Then,
because of the terms involving NNy in (13), one
can obtain a state of lower energy by removing
a nonzero fraction of the particles from zero momen-
tum and placing them in the adjacent allowed
momentum sites, thus allowing them to contribute
a negative interaction energy,'* since @ < 0. This
will lower the potential energy by an amount of
order Np |a|; on the other hand, the kinetic energy
will only be raised by an amount of order pQ* since
the allowed momenta nearest k = 0 are only a
few times 2xQ~t. More precisely, one sees from (13)
that a state in which (N /I) particles are placed into
each of [ allowed momentum sites nearest the origin
has energy

2rNpa + 2xNpa(l — ') + o(N), (14)

where o(N) has the usual meaning [o(N) < O(N),
i.e., lim therm N 'o(N) = 0]; we have assumed in
(14) that I = o(N). Since a < 0, lower energy is
obtained for larger I, and for large ! the energy
approaches the value

E, = —47Np |a] 4+ o(N). (15)

This is in fact the true N-particle ground-state
energy of H for fixed p, since the kinetic energy

14 Tt is crucial to this argument that the terms with k = k’
in (13) are excluded, being already included in the c-number
term; thus at least two allowed momentum sites must be
occupied in order for 3.’y i, to contribute.
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i8 positive semidefinite and the N, Ny. contributions
to (15) have actually attained their lower bound
[to O(N)] given by

2 Q' Z NNy
iE

> 210 e kfk_: NiNy. = —21Np |a|. (16)
Thus, although the state in which a large number
of allowed momentum sites nearest the origin have
equal occupations is certainly not the true ground
state, its energy only differs from that of the true
ground state by a thermodynamically negligible
amount o(N).

In order to find the true ground state, we note
that the upper limit on 7 in (14) is set by the increase
of kinetic energy with increasing I. Thus, although
the amount of “smearing”’ of the condensation, i.e.,
the size of the region about k = 0 in which ng
18 large, is so small that the kinetic energy is o(N)
(thermodynamically negligible) and the ground-state
energy to O() is independent of the details of the
smearing, nevertheless the kinetic energy must be
included in determining these details. The energy
eigenvalue of an arbitrary N-particle eigenstate of
(13) in which the N, have eigenvalues n, (non-
negative integers) is

E(fme}) = 20N — Dpa

+ D ik + 2007 kZ M. (17)

k k-’
Since we have already seen that the ground state
is characterized by the ny being very large in an
infinitesimal neighborhood of k = 0 but zero outside
this region, we may treat the n, as continuous
variables in determining the minimizing set {7}
provided that we require n, > 0. Then, minimizing
(17) with respect to ny subject to the subsidiary
condition

Z ng = N; (18)
k
one obtains the condition
1 — 4 4007 {S ng = 0, (19)

where g, the chemical potential, is the Lagrange
multiplier corresponding to (18). But

Z' ('Y

g

=N — Ny, (20)

so that
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12—y + dwpa — 470 'any = 0, (21)
with solution'®
ne = QGAE® — & + 4mpa)/dna
M — - dmpa >0, (22)

=0 if 1k — u+ 4wpa < O.

To determine g, we use the condition (18), hence,
replacing the sum by an integral,

2 Q Boaf1
-(57;552;;4”[0 kz(é-kz -+ 47rpa> dk = N, (23)
where
1 — p + 47pa = 0, (24)
or
k. = [2(u — 4mpa)]*. (25)

Performing the integration (23) and substituting,
one finds, recalling that « < 0 so that & = —|«a],

g+ 4mp |af = 3[15(27)°p |of/Q1°.  (26)

Thus u differs from —4mp |a| only by a term of order
%%, Substituting into (22), one finds

ne = 3k — KH)Q/4r |, kE <k,
= (0, k> k,, 27
where
k, = [15(2x)°p |a]/Q]"". (28)

Note that the ratio of k, to the lattice spacing 2207}
in k space becomes infinite in the thermodynamic
limit, in spite of the fact that k, vanishes in the
same limit.

It follows from (27) and (28) that the condition
(6) for generalized Bose condensation is satisfied
trivially; the condensate density p, is found to be
equal to the total density p, while the limiting
momentum distribution funetion 91(k) vanishes® for
k # 0. Thus the model (12), with « < 0, leads
to complete generalized Bose condensation at tem-~
perature T = 0.'* The other assumptions” '’ made
in Sec. 3 concerning the behavior of 7y in the thermo-
dynamic limit are also trivially satisfied for this
model, so that ODLRO of p, does occur.

15 Treating ny as a continuous variable is only permissible
for values of k such that the solution ny of (21) is positive and
very large (infinite in the thermodynamic limit). For values
of k such that the solution of (21) is negative, one must take
nix = 0 to obtain the ground state.

16 For a > 0 complete simple Bose condensation is present
at T = 0; the ground-state energy for o > 0is 2rNpa + o(N),
whereas for @ < 0 it is 4xNpa + o(N) = —4xNpla| + o(N).
The nonanalytic dependence on « at « = 0 is a very general

feature of many-body problems. ) .
17 See Egs. (8), (9), and the associated discussion.
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The analysis of the model (12), (13) can be ex-
tended to nonzero temperature by Wentzel’s method
of the thermodynamically equivalent Hamiltonian.'®
To apply this method one decomposes the Hamil-
tonian (13) into an independent-particle Hamil-
tonian H, and a fluctuation Hamiltonian H,:

H= Ho -+ Hla
Hy = 2¢(N — Dpa — 22Q e Z’ NN
Kk’

+ Zk: weNy,
H, = 2707 {; N — ne)Ner — ), (29)
where the n, are c-number parameters and
wx = 3 + 4707 kZ Nir
= 3k’ + dwpa — 47w Q 'om,. (30)

Then H, will not contribute to the thermodynamic
functions in the thermodynamic limit'® provided that
the ny are taken to be'®

Ny = (Nk>o, (31)

where ( ), denotes the average in the canonical
ensemble determined by H,. Since H, is the Hamil-
tonian of a system of independent bosons, the usual
formula

n = (Y — 7 (32)

applies, where the chemical potential u is determined
by (18). In view of (30), Eq. (32) is really a trans-
cendental equation for n,. However, one can obtain
explicit results in certain limits, which provide all
the information needed to evaluate the behavior in
the thermodynamic limit. For sufficiently low tem-
peratures one expects that n, will become very large
as k — 0, as in the case T = 0 [Egs. (27), (28)].
Then B(wx ~ ) must necessarily become very small,
so that the exponential may be expanded, and

k—0 (33)

to leading order for large N and Q. Inserting (30),
one then has

nx 3k’ + dmpa — p — 4xQ7'amy) = «T, k — 0. (34)

But since «T is independent of N and Q, it is clear
that ni can only be of order ** [as in (27)] if the
expression in parentheses vanishes to leading order.

18 ;. Wentzel, Phys. Rev. 120, 1572 (1960).

12 More precisely, the contribution of H, to intensive
quantities will vamsh in the thermodynamic limit, and its
corlltl('ib)utiono]to extensive quantities will be o(Q)[lim therm
Q0(Q2) = 0].

ne = kT/(wx — w),
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Thus
ne = 301 — K)Q/4r fol,  k <k,  (39)

where k, is related to u, @, and 2 by (25). This is
the same expression as was obtained for T' = 0,
except that now we shall find that %, is temperature
dependent. At & = k., n,. does not exactly vanish,
since (35) is only correct to order @°/°; instead, one

sees from (34) and (25) that
ne, = QT /4x |af)d. (36)

As k increases, ny will continue to decrease mono-
tonically. For k which is nonvanishing in the thermo-
dynamic limit, one sees from (32) and (30) that n,
is given by an expression which differs from that
for the ideal Bose gas only in the replacement of
p by u + 47p |a|. But in view of (25), and the fact
that k, is of order 7%, one sees that the limit
function 9t1(k) [Eq. (6)] is just

Nnk) = (' — 1), k=0, (37)

where 7', is the Bose condensation temperature,
which will presently be determined. The limiting
behavior (37) is the same as that for the ideal Bose
gas.” The chemical potential x is determined, as
always, by (18). In view of the formal identity of
(35) and the top Eq. (27), the number fN of par-
ticles in the condensate is obtained by replacing N
by fN in the right side of (23), where f is the con-
densed fraction. Then (26) is replaced by

w+ 4mp o] = 315(2x)°fp of/Q°  (38)

and p is replaced by fp in (26). The number of un-
condensed particles is determined by integrating the
limiting momentum distribution (37):

_e
@2r)*
Inserting the known®® value for the integral, one finds
(I = flo = («T/2m)¥¢(3) = 2.612(T/27)},  (40)

where { is the Riemann zeta function. The condensa-
tion temperature T, is that temperature at which f
and k&, [Egs. (25) and (38)] vanish; hence, by (40),

T, = 2x/x)(p/2.612)". (41)

Thus the condensation temperature T, and the de-
pendence of the condensed fraction f on T are the
same as those of the ideal Bose gas; the only effect
of the attractive interaction @ < 0 in the simple

T<T,

(1~ DN = S ar | TRE — Dk (39)

2 See, e.g., F. London, Superfluids (John Wiley & Sons,
Inc.,, New York, 1954), Vol. 11, pp. 40 ff. London’s param-
eter « is of order N for T < T,
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model (12), (13) is to “smear” the condensation,
but without changing the gross parameters f and T..
Above the condensation temperature n, is only of
order unity for all values of k including k = 0 and
its neighborhood, so that (30) and (32) give

ak) = [P0 — 117, T>T, all k,

where

(42)

(43)

Furthermore, it is clear from the method of de-
termination of u that for given 7 > T, ' will be
equal to the chemical potential of the ideal Bose
gas at the same temperature. Thus

Sl(k: T) = 97'O(k’ T); r>r,

where 97, is the momentum distribution of the ideal
Bose gas in the thermodynamic limit. Although these
results might appear surprising in view of the inter-
action terms in (13), they are readily understand-
able when one notes that the single-particle energy
levels wy of the thermodynamically equivalent Ham-
iltonian H, [Eq. (29)] differ from those of an ideal
Bose gas only by the constant shift 4rpa = —4mp |a],
except in an infinitesimal region about k = 0 for
T<T,.

One concludes, then, that at all temperatures
T < T,, the thermal equilibrium single-particle mo-
mentum distribution of the model (12), (13), with
a < 0,” satisfies the sufficient conditions given in
Sec. 3 for the existence of ODLRO in p, due to
generalized Bose condensation, the nonzero param-
eter p, (the condensate density) in (9) being given by

pe = fo = pll — (T/T)Y, (45)

the same expression as for the ideal Bose gas. The
essential difference between this model and the ideal
Bose gas is seen by looking at the behavior of
(x| p, X’} as a function of x — x’ for large but finite N
and Q. For the special case T = 0 one finds by (5)
and (27)

& o] x) = 3@m) 7 (Q/|a)) [x — x'[7°
X 16 — 2k |x — x'|"] sin (&, [x — x'[)

— 6k, |x — x’| cos (k, |x — x’|)

b= u+ dmp |of.

(44)

(46)
to leading order® for large N and Q. If one were

21 The same 1s true if &« > 0, in which case the condensation
is of the usual form (‘“simple” condensation, i.e., a delta
function at k = 0), which is a special case of generalized
condensation.

22 The k-sum (5) has been replaced by an integral in ob-
taining (46); this is permissible, since the limit @ — « is to
Fe ta,ke,rll first, for fized |x — x’|, before passing to the limit
X — x| = o,
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to take the limit [x — x’| — « in (46) for fixed k,
and @, one would reach the incorrect conclusion that
ODLRO is not present. However, as shown in See. 2,
the correct definition of ODLRO involves taking the
thermodynamic limit first, then the limit |x —x'| — .
For fixed [x — x/|, the expression in curly brackets
behaves like (Z)k! |x — x'|* as k, — 0(Q@ — «),
so that by (26) the right side of (46) approaches p.
Thus ODLRO is present,” in agreement with our
previous result.

The model we have studied here is physically
unrealistic in two respects. In the first place, it
retains only the diagonal part of the interparticle
interaction; in the second place, the system would
collapse to infinitesimal volume if the density p were
not artificially constrained to remain constant, since
the interaction is purely attractive with no repulsive
core. The first defect can be removed to the extent of
including “pairing-interaction” terms a,a' . a_x ax-,
without altering the final conclusion that generalized
condensation, and hence ODLRO, are present.** The
second can be removed by including a hard-core
pseudopotential in addition to an attractive tail,*®
although the treatment is not entirely satisfactory.”®
However, the point we wished to emphasize in this
section is that ODLRO is implied not only by simple
Bose condensation, but also by generalized con-
densation. The question of the precise nature of the
Bose condensation in liquid *He must, of course,
still be regarded as open.

5. EFFECT OF BOUNDARY CONDITIONS

We have restricted ourselves in Secs. 3 and 4 to
the case of periodic boundary conditions. However,
as emphasized by Yang, the concept of ODLRO is
a very general one, and ought also to apply, e.g.,
to box-enclosure boundary conditions, which are
more realistic for most applications to liquid *He.
The operations involved in the criteria (3) and (9)
for ODLRO in p, can still be carried out in the
case of box-enclosure boundary conditions (or any
other reasonable ones), so that it is natural to inquire
whether or not there is any reasonable generalization

23 The final limit |x — x’| — o is trivial in this case (T' = 0)
since the thermodynamie limit of (46) is in fact independent
of |x — x'|. For T > 0, there is a nonzero term (xlp,’| x')
which vanishes as [x — ¥/| — .

2¢ The zero-temperature case is treated in Ref. 10; the
analysis can be extended to 7' > 0 by the method of the
thermodynamically equivalent Hamiltonian (Ref. 18).

25 Reference 10, p. 1476.

26 Although the ground-state energy as a function of den-
sity has a minimum so that collapse does not occur, the low-
density approximations that must be made in order to obtain
explicit results are not accurate at the equilibrium density.
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of the concept of generalized Bose condensation
which would apply in such cases.

We start from the observation that the single-
particle density martix (x| p, |x’) in coordinate
representation [(1), (2)], when regarded as an integral
kernel, is Hermitian and positive semidefinite, so
that it possesses a complete orthonormal set of eigen-
functions® ¢;(x) and associated real and nonnega-
tive® eigenvalues n,:

[ & ol x)ei@) &' = @), )
The generalization of Eq. (5a) is then
& || x) = Z: npi(De% (), (48)

which is the familiar eigenfunction expansion of a
Hermitian kernel. All eigenvalues of p, [hence of
the kernel (x| p, |x’)] for an N-particle system are’
< N, so that they may be assumed to be ordered
in a descending sequence n, > n, = -+ . We then
define generalized Bose condensation to be present
if and only if
LeN]

lim lim therm N™* >.n; = > 0,

0 i=]

(49)

where € is a positive parameter independent of N
and @, [eN] is the largest integer < &N, and “lim
therm” is defined by (4); the limit f will be called
the “condensed fraction.” In case p, has one eigen-
value of order N and all other eigenvalues of order
unity, (49) will be satisfied, with f equal to the ther-
modynamic limit of n,/N.* However, the definition
(49) is much more inclusive. Consider, e.g., the case
of periodic boundary conditions. Then the n, are the
values of the momentum distribution function 7
on the discrete k-lattice, enumerated in order of
decreasing magnitude. Suppose, furthermore, that
generalized Bose condensation in the sense (6) is
present, and that n, is a decreasing function of k.
Then, since there are asymptotically 4(2/(2x)%xk?
allowed k values in the sphere of radius %, about
k = 0, one sees on taking ¢ = (#)rki/(2r)°p that

27 These are the “natural orbitals” of the system; see, e.g.,
A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963), where the
analogous fermion case is discussed. Further references are
given there.

28 p, may have the eigenvalue zero, which may be de-
generate. Thus, e.g., for the ideal Bose gas at zero temperature,
(X |01] ¥') = Npi(X)e*(x"), where ¢,(x) is the lowest single-
particle state. This kernel possesses a single nonzero eigen-
value n; = N with eigenfunction @1, and the infinitely de-
generate eigenvalue zero, with eigenfunctions ¢i(x), ¢ > 1.

29 Since the eigenvalues n; with ¢ > 2 are only of order
unity, they possess an upper bound b independent of N and
9, so that X!N) n; < ny 4+ {{eN] — 1}b and hence
lim therm N-t 3°[*N1, ; = lim therm (n:/N), + b, so that
the total contribution of higher eigenvalues vanishes as ¢ — 0.
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(49) is satisfied with f = p,/p. More generally, (49)
will also be satisfied for Bose condensation at non-
zero momentum, condensation into a single-particle
state which is not a momentum eigenstate, and hope-
fully also for “smeared” condensation into a set of
“neighboring” (in some physically meaningful sense)
single-particle states which are not momentum eigen-
states, but are physically meaningful single-particle
states for the system at hand.

However, a simple example shows that in dis-
cussing the relationship between ODLRO and Bose
condensation, complications arise for box-enclosure
boundary conditions which are not present for
periodic boundary conditions. Consider an ideal Bose
gas in the one-dimensional box 0 < z < L. Then
the lowest single-particle state is

eu(z) = (2/L)} sin (zz/L). (50)
It follows that at temperature 7’ = 0
(x| py |2") = 2p sin (xz/L) sin (xz’/L), (51)
where p = N/L. Thus
lim therm (z| p, [2') = 0 (52)

for fizred z and z’. Then by (3) one concludes that
ODLRO is not present, in spite of the fact that
at T = 0, complete Bose condensation is present.
However, a little thought shows what has gone
wrong. The essential point is that the purpose of
taking the thermodynamic limit is to remove the
boundaries to infinity before letting |2 — 2| — .
But if we use the box 0 < 2z < L as above, and keep
z and 2’ fixed as L — o, then only the right end
of the box is removed to infinity; z and z’ stay
within a finite distance of the left end of the box,
and (52) is a simple consequence of the normalization
of the wavefunction together with the requirement
that it vanish at the walls (in particular, at the
left end of the box). Thus the thermodynamic limit
should be interpreted in such a way that beth
(in three dimensions, all) walls recede to infinite
distance. This will be achieved, e.g., if we take the
box —%L £ z < #L. Then instead of (50) we have

oi(x) = (2/L)} cos (xz/L), (53)
so that
(x| py |2') = 2p cos (xx/L) cos (xz’/L),
lim therm (z] p, |z’) = 2p. (54)

Then the double limit (3) is 2p instead of zero, so
that ODLRO is present.

This example suggests that Bose condensation and
ODLRO in p, are closely related for boundary con-
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ditions other than the periodic one for which we
have already proved the relationship, provided that
the thermodynamic limit is interpreted properly. As
further evidence, we shall examine a model closely
related to that studied in Sec. 4. We begin by noting
that the peculiar result (52), although due partially
to an incorrect interpretation of the thermodynamic
limit, as explained above, is also related to the
pathological nature of the completely ideal Bose
gas in a box, and in particular to the fact that the
single-particle density varies across the box instead
of being constant except within a microscopic dis-
tance of the walls, ag would be the case for a real
gas.”® It follows that for box-enclosure boundary
conditions, it is very easy to obtain nonsensical re-
sults by a perturbation treatment starting with an
ideal Bose gas as unperturbed system. The way
around this diffieulty was pointed out by Schafroth®':
one starts not with free-particle states, but with
Hartree-Fock states. Then the lowest Hartree-Foek
orbital® ¢,(x) for any reasonable container shape
is just the constant 9% (where Q is the volume of
the container) except for a region within a micro-
scopic distance from the walls, where ¢,(x) drops
to its value zero at the walls as required by the
boundary condition. Schafroth’s analysis was for the
special (and exceptional) case of the charged Bose
gas, but his final conclusion concerning the nature
of the lowest Hartree~Fock orbital appears to be
of very general validity. Although a rigorous proof
appears difficult because of the nonlinearity of the
Hartree-Fock equation, a self-consistent analysis
which makes this contention plausible is carried out
in the Appendix. It is furthermore shown (not
rigorously) that not only the lowest Hartree-Fock
orbital but also the higher orbitals differ only in a
microscopic boundary layer near the walls from free-
particle orbitals ¢x appropriate to the homogeneous
Neumann boundary condition®

fi+Vou(x) = 0 on the walls, (55)

where fi is 8 unit vector normal to the wall.

We shall therefore examine the properties of a
model Hamiltonian which is diagonal in such a rep-
resentation. For a cubical box of volume @ with
facesat z = 3L,y = 3L,z = £3iL, a complete
set of orbitals satisfying (55) is

30 This was emphasized by T. D. Lee, K. Huang, and
C. N. Yang, Phys. Rev. 106, 1135 (1957}, Footnote 17,

2 M. R. Schafroth, Phys. Rev. 100, 463 (1955), Sec. 4.

2 For the sake of brevity we adopt the chemical nomen-
clature “orbital”’ for “single«ggrticle state,” .

8 Note that this insures that there will be no particle flux
through the walls, an obvious necessary condition for im-

penetrable walls.
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ex(®) = fr.@f, W), (56)

where the allowed values of k,, k,, and k, are nx/L,
n=2012 -,

hx) = (/L) cos [kx + 31L)],
folz) = (/L)% (67

and L = Q! If we start with a Schrodinger Hamil-
tonian

kE#0

N

N
D — A} + dwa D 8(x; — x), (58)
i<l

i=1

HSch =

where « is a scattering length and 4rad(x; — x,) the
corresponding Fermi pseudopotential, then the di-
agonal part of this Hamiltonian in a representation
in terms of annihilation and creation operators ay, ay
for particles in the orbitals ¢y is

"
H = ; %kzakak

+3 l; (k' {Vl kk’)a;a;'ak’ak

+3 2 &k |V B o oo (59)
in analogy with (12); here
(k' |V|kk') = (kK'k |V| Kk’
= dra [ Q2O A5 (60)

Evaluating the matrix elements with the aid of (56),
(57) and using the Bose commutation relations to
express H in terms of the occupation-number op-
erators Nx = ajax, one finds, aside from terms
which are negligible in the thermodynamiec limit,**
H =200+ TN+ T T NV, 6)
where the prime on the last summation implies omis-
sion of terms with k = k’; note, however that terms
with k = 0 or kK’ = 0 (but not both) are included.
If & > O then the N-particle ground state has
Ny, = N and N, = 0, as in the case of the model

3¢ The omitted terms are

(4re/ Q) { — (27/16) ;,) Nu(Nye — 1) — iNo

+ 2 [D(ke, k) + D(ky, ) + D(k,, k2)
(k#:)(.l;’!‘o)

+ D(kn k::) D(kw k:'/) + 'D(kz’ k;) D(kn k:)

+ D(’cy) kn’;) D(kzy k;) + D(kzr k:’t)D(kU! k;) D(kz! ki)}g

where

D(k’, k') = 5ko + Srro + %(akk' + 5k,-—k’)*

These terms clearly contribute only O(1) to the thermody-
namic functions even in the case of simple Bose condensation
{No =N O(N)]; in thermal equilibrium no Ny exeept N, can
be O(N).
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studied in Sec. 4, which differed only in that periodic
boundary conditions were used instead of (55). The
corresponding ground-state energy is clearly 2xNpa,
which differs from the result 2z (N — 1)pa of Sec. 4
only by a thermodynamically negligible (nonexten-
sive) term. By (48) and (57) one has®®

&l o [x) = N/Q = p, (62)

so that ODLRO is present; again, (62) is identical
with what one would ealculate for periodic boundary
conditions,

The interesting question, however, is whether
generalized Bose condensation and ODLRO occur
for @ < 0, as they did in the case of periodic bound-
ary conditions. By essentially the same argument
as used in Sec. 4, one sees that then the ground
state will have high occupation of a large number
of allowed k states near and including k = 0;
minimizing the ground-state energy with respect to
the occupation numbers n, subject to (18), one
obtains
4rQ7%ame — p + 8707 2 my = 0,

k0

3’ — p+ 8mpa — 87Q'amy = 0, k0. (63)
The solution of the k 54 0 equation is*°
ne = QG3%* — u + 8mpa)/8ra
if 3% — u + Swpa > 0,
=0 if 3% — u -+ 8rpa <O. 64)

The value, k,, of k& at which n, vanishes to leading
order in  is, in analogy with (25),

k. = [2(s — 8mpa)]},
and the analog of (23) is*’

ko
(1 &9 )41rf WGk — u + Srpe) dk = N. (66)

8 ° 8.

Thus

(65)

u + 8wp |a| = 3[2407°p |a|/Q]**
so that by (64) and (65)

3 Tt is clear from (1) that (x |p:] x’) reduces at T = 0 to
the ground-state average of y1(x')y(x). Inserting y(x) =
>k ex(X) ax, and using the fact that the ground state is
diagonal in the Ny representation with eigenvalues Ny = N
and Ny = 0, k # 0, one obtains the desired result.

36 See Footnote 15.

37 With the boundary condition (55) and states (57), all
components of k must be nonnegative; thus we integrate only
over 1/8 of k space. Also, the density of states in the allowed
region (all components positive) is ©/#3 instead of @/(2x).%
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ny = 3k — k)Q/8xla|, 0<k<k,
=0, k> k, 67)
with
k, = [2407°p |a|/Q]". (68)

One then sees from (18), (65), and the top Eq. (63)
that

ne = 3k2Q/4rlal. (69)

Thus, just as in the periodic boundary condition
case studied in Sec. 4, n, is not O(N), but the sum
of ny over k¥ < k, is O(N). The eigenvalues n,,
ny, -+ of p, are just the n, ordered in descending
magnitude®; thus the criterion (49) for generalized
Bose condensation is satisfied with f = 1, as was
the case for periodic boundary conditions.

In order to examine the limiting behavior of
(%] py |X’) we use (48) and (67) to write*®*®

Il X) = iy 3 0~ Peuettx) (10)
(k<kq)

to leading order in Q. In evaluating the thermo-
dynamic limit of (70) some care is required, since
the ¢x depend on Q in a way which is not so trivial
as in the case of periodic boundary conditions. For
the boundary conditions (55) one has

cos [k(z + 3L)]
= (=1 cos (kz), n=2024,.--,
= (—I}™*Vsin k), n=1,3,5, ---, (70)

where k = nx/L. Since k, — 0 in the thermodynamic
limit, it is clear that contributions to (70) involving
sine factors will be negligible compared to those
involving only cosine factors in the thermodynamic
limit, and that in that limit the cosine factors may
be replaced by unity. Furthermore, the factors
(=1)* may be dropped since only [(—1)¥]® = 1
oceurs in ¢y (X)ox (x’). Finally, the set of allowed k
values whose components are all even nonnegative
integral multiples of /L, so that by (71) only cosine
factors occur, is § of the set of all allowed k values
(all components nonnegative integral multiples of
/L), which is in turn § of the set of all k values
whose components are positive or negative integral
multiples of n/L. Thus one finds with the aid of
(57), (71), and (68)

38 This is proved by the obvious generalization of the argu-
ment in Footnote 35.

# Since, by (57), ¢ is an even function of the components
of k, and furthermore ny is a function only of & = |k|, one
may extend the integration over all k with k < k, and multiply
by a factor 1/8.
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lim therm ¢x |p,| x’)
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Thus ODLRO in p, is present, and in fact with the
same Hmiting value, p, as was found in Sec. 4 for
periodic boundary conditions. It is furthermore clear
that the analysis could be extended to nonzero tem-
perature by the same method as was used in Sec. 4,
and that one would then find a thermodynamic
phase transition at 7' = T,, with the properties
that for T < T, both generalized Bose condensation
[in the sense (49)] and ODLRO in p, are present,
and for T > T, both are absent.

At this point it is necessary to make the same
provisos concerning the unphysical features of the
model Hamiltonian as were made at the end of
Sec. 4; as there, we remark that the model can be
refined so as to remove some but not all*® of the
unphysical features.*” We further remark, as in
Sec. 4, that the existence of generalized Bose con-
densation and hence ODLRO in p, for this model
raises the question of whether ODLRO in more
realistic systems might not be associated with
generalized rather than simple Bose condensation.

6. A CONJECTURE

In Secs. 3 and 4 it was shown that for a boson
system with periodic boundary conditions, the exist-
ence of ODLRO in p, is equivalent to the existence
of generalized Bose condensation. In Sec. 5 it was
shown that the relationship also holds for homoge-
neous Neumann boundary conditions in the case
of a simple soluble model, and it was made plausible
in the Appendix that the same analysis should hold
for box-enclosure boundary conditions. On the basis
of these results we shall make the following con-
jecture:

For a system of bosons in thermal equilibrium
and with arbitrary boundary conditions, the exist-
ence of ODLRO in p, in the sense (9) is equivalent

40 An additional unphysical feature, which does not oceur
for periodic boundary conditions, is that the single-particle
density for large but finile N and Q can be shown to be of the

form
(x o] X ~ (1/8)p + §(x),

where f(0) = (7/8)p, whereas f(x) falls to zero for [x] >
kst = O(9Y5), Thus 7/8 of the particles are concentrated in
a region in the middle of the box which is negligible compared
to the volume of the system, although very large compared
to atomic dimensions. For hard spheres this could not occur.

4 Removing all unphysical features is clearly incompatible
with exact solubility of the model.
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to the existence of generalized Bose condensation
in the sense (49).

A major difficulty in attempting to prove this
conjecture is that the eigenfunctions of p, are not
known for an interacting system with arbitrary
boundary conditions. In contrast, for periodic bound-
ary conditions, p, is necessarily diagonal in momen-
tum representation, so its eigenfunctions are plane
waves Q%™ for arbitrary translation-invariant
interparticle interactions** and arbitrary tempera-
tures; this is what enabled us to construct an
explicit proof in Sec. 3. It would seem that a proof
for general boundary conditions might be based on
variagtional arguments of the type employed, e.g.,
in Sec. 4 of Penrose and Onsager.” However, the
author has not succeeded in such an attempt, and
wishes here only to express the hope that the con-
jecture will eventually be either proved or disproved.

7. DIFFICULTIES WITH HARD CORES

The models studied in Secs. 4 and 5 are not
directly applicable to systems with hard-core inter-
actions except insofar as one trusts scattering-length
or pseudopotential approximations as applied to this
problem, since the Hamiltonian does not exist in
any rigorous sense in a single-particle representation.
This is well known for the special case of plane
waves, and can be shown to be true for any complete
set of single-particle states.

On the other hand, the conjecture in Sec. 6 is
meant to apply also to systems with hard cores
(in particular, to liquid “He). Furthermore, the
general relationship between ODLRO and general-
ized Bose condensation established in Sec. 3 for
periodic boundary conditions should be applicable
to systems with hard-core interactions, although it
does not seem possible to rigorously prove that any
such system has a momentum distribution function
with the analytical properties assumed in Sec. 3.

8. TWO-PARTICLE DENSITY MATRIX

The two-particle density matrix is defined, in
Yang’s notation,® by

(X, |po] XixS) = Tr [Y(x)¥ &)y @Y @], (73)

We shall limit ourselves in this section to periodic
boundary conditions. Then the Bose field operator
Y(x) can be expanded in terms of plane waves,
leading to the expression

42 The interaction potential must be periodically extended
in the usual way to ensure compatibility with the periodic
boundary conditions.
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(XX, ’le XX;) = Q E E gl gt
Kiks k,’ks’

X e Mg (74)

analogous to the simpler expression (5) for (x| p; |x’).
By momentum conservation,

ika'exg’ t t
* 7 Tr (Gx,0x, POk, A, 1),

ot
Tr (ax,0x.00x, 04x,/) = 0

unless k, + k, = k; + k;; (75)

but here this is a much weaker restriction than was
the corresponding one for p,, since it does not imply
that p, is diagonal in the free-particle representation.
Hence we cannot prove a general relationship be-
tween ODLRO of p, and its eigenvalues, analogous
to that proved in Sec. 3 for p,; the best we can do
is look at highly simplified special cases, and make
the obvious conjecture about the general case.

To this end, consider the case that H (hence p)
is diagonal in the free-particle representation, as is
the case for the model studied in Sec. 4. Then the
trace (75) is only nonzero if k, = kJ, k, = kj or if
k, = ki, k, = k{, and one finds with the aid of
the Bose commutation relations

(x:%, |P2| Xx;) = e kzk: [9ik"(Xl—x")e‘.k"(x._x.l)
1 t ]

+ e,-kl.(xx—x,’)eikg-(xa—xx’)] r-[‘r (ka‘Nk,)
— Q7% Y g mameen ) Ty (N2,

k

(76)
Evaluation of the trace in a free-particle basis

{la)} gives®
Tr (pNg,Ny,) = aZﬂ (a IPkal !3>(.3 lNk.l a)

= X (a |plVu,] e [N ).

At T = 0, p is just the projection operator onto
the ground state, which is a simultaneous eigenstate
of the N, and can therefore be chosen to be one
of the |a). Hence

@)

Tr (6N Nk,) — N N, (78)
T-0

where n, is the eigenvalue of Ny in the ground
state. Thus, substituting into (76) and comparing
with (5), one finds

(X:X3 |ps] X1X%) = & [pu] XINZ: 01| D)

+ (&1 [o1] X2XZ2 [ 01| X1)

_ Q—z Zes’k'(xprx,—x.’—x.’)n;-
k

(79)

In the case of simple Bose condensation [n,=O0(N)]

43 This is true even if p is not diagonal in the free-particle
basis; however, the diagonal property of p will be used in
further reducing (77).
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both the superposition terms (those bilinear in p;)
and the sum over ng have nonvanishing thermo-
dynamic limits for all values of x,, x,, X/, x}, so
that ODLRO is present in p,, in agreement with
Yang’s conclusion.** In the case of “smeared” con-
densation typified by the model of Sec. 4, the thermo-
dynamic limit of the sum over n? can be shown to
vanish, but that of (x| p, |x’) does not (as shown
in Sec. 4), so that again ODLRO of p, is present.

How is this behavior related to the eigenvalues
of p,? In the simple case studied here (H diagonal,
T = 0) the eigenfunctions and eigenvalues of p,
can be found explicitly. Substitution of (78) into (76)
yields

(XX, oo| X[xf) = Q7% 3 mamac
k;k,
X [eik.'(x,—n')eik.'(xn—!:')

+ eik,'(x;—x.')eika'(xl-xx')]

_ 9—2 Eeik'(xx+x.—x,'—x,’)n:.
k

(80)

Then one finds by direct substitution that the eigen-
functions ¢ and eigenvalues N of p, [in the sense
of (47)] are

Can(ZiXs) = 2737’ T 1T 4 UGN (81)

2
)\‘11ﬂ: = 2nﬂana - 6‘11‘]:"’(11'

It is therefore clear, at least for this special case,
that large eigenvalues of p, imply large eigenvalues
of p,, the largest eigenvalues of p, being of order
of magnitude of the square of the largest eigenvalues
of p,. In the case of simple Bose condensation, p,
has a single large eigenvalue (here Ao,) of order N?,
as previously pointed out by Yang®; in the case
of generalized condensation typified by the model
of Sec. 4, p, has no single eigenvalue of order N?
but there are many large eigenvalues whose sum
is O(N?), in the sense that

Z Z A = O(Nz):

q1<ks qa<ks

where k, is given by (28). We conjecture that this

behavior is of very general occurrence; to be precise,

we conjecture that generalized Bose condensation

is associated not only with ODLRO of p; and large

eigenvalues of p, in the sense of (49), but also with

ODLRO of p; and large eigenvalues of p, in the sense
{eN?]

lim lim therm N™2 > A, > 0,

=0 i=]

where the A; are the eigenvalues of p, enumerated
in order of decreasing magnitude. It is clear that

(82)

(83)

44 Section 17 of the first reference in Footnote 3.
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(83) is satisfied in the special case (82), but (83)
can be applied even when the A, are not labeled
by free-particle momenta.

The situation is quite different in the Fermi case.
The derivation of (79) goes through as in the Bose
case, except that the sum of superposition terms
18 replaced by their difference, and the sum over
n? is absent. But then, since p, cannot show ODLRO
for a Fermi system,’ one concludes that a model
Hamiltonian which is diagonal in the free-fermion
representation, but may include arbitrary diagonal
interaction terms, cannot lead to ODLRO in p, at
T = 0, and hence a fortior: also not at higher
temperatures. This is entirely consistent with the
fact that the canonical example of a Fermi system
showing ODLRO in p,, namely the Bardeen, Cooper,
Schrieffer (BCS) model of superconductivity,*® has
the property that the interactions included are en-
tirely off-diagonal in the free-particle representation,
consisting of pair-pair scattering terms O Oy
For such a model the aforementioned superposition
terms in (X,X,|p,|X{X}) are supplemented by an
additional term®® x(x,x;)x*(x/x}) which leads to
ODLRO in p, of the type described by Yang,*’
associated with a single large eigenvalue of p, of
order N. This is the analog, for the Fermi system,
of simple Bose condensation. It would appear that
the following questions deserve to be investigated:
Are there any Fermi systems which exhibit a phe-
nomenon analogous to generalized Bose condensa-
tion? If so, do they exhibit the phenomena typical
of a superconductor, such as the Meissner effect and
magnetic flux quantization?

APPENDIX

We shall investigate here the nature of the Har-
tree-Fock orbitals for a system of bosons in a con-
tainer with impenetrable walls.

In order to avoid nonessential complications, we
shall consider the special case of a cubical box and
a repulsive delta-function interparticle interaction.
Thus the Hamiltonian is

N N
H=2 —3Vi+ Toix —x), (@A)
1 i<t

with v, > 0. We take box-enclosure boundary
conditions:

‘P(xl Tt XN) = 0) Y= :*:%L;

2 = :\‘:'21’L) (A2)

45 J, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957).

46 See, e.g., A. J. Coleman, Phys. Rev. Letters 13, 406
(1964), and other references cited therein.

47 Section 18 of the first reference in Footnote 3.

xi=:’:%L)
1<j<N,
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where & is the many-boson wavefunction, z;, ¥;, 2;

are the rectangular coordinates of x,, and @ = L°.

We are interested in the nature of the Hartree—Fock

approximations to the exact eigenstates of H. For

bosons the lowest Hartree-Fock state is of the form
N

o(x; -+ Xy) = II @o(X;), (A3)

i=1

where ¢, (assumed normalized) satisfies the Hartree—

Fock equation

[=3V° + V®]eo(®) = e0po(x) (A4)
with a self-consistent potential
Ve = O = 1) [ s0dlx — %) leow) [ d'
= (N — o le®)[’.  (A5)

Since ¢q(x) must vanish at the walls because of (A2),
it follows that V(x) also vanishes there; however,
we shall find that V(x) is essentially constant except
within a microscopic distance of the walls. Since
we wish to obtain a complete orthonormal set of
orbitals, we shall also consider excited orbitals ¢x (X)
which are solutions of

[—3V° 4+ V(®)]ex(®) = exon()

with the same potential V and satisfying the same
boundary conditions. Just as (A4) arises from a
variational treatment with a trial ground state of
the form (A3), so (A6) arises from a variational
treatment (with respect to variations of ¢x) with a
single-excitation trial state of the form

(A6)

Pu(x, -+ X)) = N—ii @o(Xy)- - -

X @o(X;-1)oxX)eo(X;41) **+ eolXn). (A7)

The physical significance of the eigenvalue parar-
eters ¢ and e in (A4) and (A6) is that the energy
expectation value of the state &, is Ne¢, whereas
the excitation energy of the state ®, is ¢ — .
The reason for labeling the excited orbitals by a
wave vector k will presently become clear.

Schafroth showed® that for the charged Bose gas
@o is constant except within a microscopic distance
of the walls, where it drops to zero. Since the
Coulomb interaction requires a slightly different
treatment®’ because of its long range, and further-
more since we wish also to consider the excited
orbitals, we shall redo the analysis here. Anticipating
the final result, we write

eo(x) = 271 4 x,(®)], (A8)
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where
(A9)

in order to satisfy the boundary condition (A2);
however, we expect [xo] << 1 in the interior of the
box, so that the normalization constant can differ
only infinitesimally from @}, and this difference can
be absorbed into x,. Substitution into (A4) gives

xo(x) = —1 on the walls

[—3V" 4 V(® — alo® = « — V@&, (Al0)
with
V&) = o [ 0006 — x) |1+ xo(&)] &'’

= pYy Il + Xo(x)lzy (Al11)

since (N — 1)/2 — p in the thermodynamic limit.
But if x, is appreciable only in a region of extent A
(independent of N and Q) near the walls, then it
follows from (A8)—(All) that

€ = pUo 1+ 00\/9*):

gince AQ! is the volume within which x, is appreciable
and \@'/@ = A/Q!. Thus in the interior of the box
we may linearize (A10) [with (A11)] in the form

(—3V* + 2000)x0(x) = 0 (A13‘)

aside from a term which vanishes in the thermo-
dynamic limit; in expanding (A11) we have assumed
without loss of generality (since the ground state
is nondegenerate) that x, is real.

Since x, will be found to be appreciable only
within a microscopie (i.e., independent of Q) distance
of the walls, it is extremely plausible that x, will
be a function only of the single variable measuring
distance perpendicular to the wall, unless x is within
a microscopic distance of an edge or corner. We
therefore assume x to be near the wall z = 1L
or x = —3L but not near any other, and look for
a solution x,(r) independent of y and z (z means
the z component of the vector x). Then (A13)
reduces to

—3x0' (@) + 2pvoxo(z) = 0.

By symmetry xo(z) must be an even function of z;
the most general real, even solution of (A14) is

Xo(x) = A cosh (ax)’

(A12)

(A14)

a = 2(pv,) *: A

where A is an arbitrary real constant. Since we
shall find that x, is only appreciable near the walls
z = =1L, one has
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Xo(z) = §Ae™ (A16)

near the right wall, except for a negligible term of
order Ae ¥*L; since x, is symmetric, the left wall
need not be considered explicitly. Eliminating A in
terms of x,(3L — }), one has

xo(@) = xo&L — Ne @2, (A17)

which shows that x, falls off exponentially as z
recedes from the boundary layer (of width A) toward
the interior of the box.

To complete the solution of the full nonlinear
equation (A10) [with (A1l)], one can choose the
thickness A of the boundary layer such that x, is
small enough outside the boundary layer to justify
the linearization (A13), joining the analytical solu-
tion of the linear equation onto a numerical solution
of the nonlinear equation which goes to zero at the
walls. It is clear from (A17) that even the nonlinear
equation (A10) separates to an excellent approxima-
tion except within a microscopic distance of edges
(where the problem becomes two dimensional) and
corners (where it becomes three dimensional). Thus,
within a microscopic distance of the plane z = 1L,
xo depends only on z away from edges and corners,
so that (A10) [with (A11) and (A12)] becomes one
dimensional:

—3x5’ (@) + 3pvoxo(®) + 2pvxa(x) + 2pvexe(x) = 0.
(A18)
To be specific, suppose
xo(3L — 7)) = —0.1. (A19)

Then one may integrate (A18) numerically to the
right, starting at + = 3L — A where x, and its
derivative are fitted to (A17), until x, = —1; the
value of X must then be adjusted so that the value
of z at which x, = —1 is # = iL. Defining new
independent and dependent variables £ and ¢, by

£ = (o)} + \ — L),

Po(£) = xo(), (A20)
one obtains the following equation for ,:
'%' = 2¢o(3 + 2y + 2‘/’3); (A21)

which is to be solved subject to the initial conditions

¥(0) = 0.1,  ¥0) = —0.2, (A22)

which follow from (A20), (A19), (A17), and (A15).
Multiplying (A21) by ¢!, one finds

@/AEYW) = 49ide(3 + 29 + 2¢3),  (A23)
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which can be integrated immediately to give

WO — WO = F($(®) — F(¥e(0)),

F(¥o) = 2953 + $¢0 + ¥0). (A24)
Thus, since ¢} < 0,
WiE) = —[4 + F(@®, (A25)
with
A = [Y0)]* — F(¥,(0)) = —0.0164. (A26)
Then
Yol
fw (4 + PO dt = —t. (A27)
0 (0)

The value, £, of £ at which ¢, goes to —1 is then
given by

-1

Ew=—

-0.

A+ FoOrta

1
= (—0.0164 + 68 — 8 + 2t Hdt = 1.2.
0.1
(A28)

Then, since x = %L at the wall, (A20) gives the
thickness A of the boundary layer, nominally chosen
8o that |x,| = 0.1 at the edge of the boundary layer:

A = 1.2(pwo) "L (A29)

Within a microscopic distance of edges or corners,
the assumption that x, depends only on the distance
from one wall (the wall which x is very near) fails;
to obtain the solution of (A10) in such exceptional
regions, one would have to solve (A10), (All)
numerically subject to (A9), adjusting Vx, on the
walls so that x, joins on smoothly to the previously
obtained solutions. However, we shall not consider
these regions, since their effect is clearly negligible
in the thermodynamic limit,.

We still have to investigate the solutions of (A6)
for k 5 0. In order to see what the proper generaliza-
tion of (A8) is, it is necessary first to state our
result for the case k = 0 in a form which admits
such a generalization. We found that x, in (A8) was
appreciable only in a microscopic boundary layer
lining the walls of the cubical box within which the
system of bosons is confined ; throughout the interior
of the box, ¢,(x) is merely equal to the constant Q7%
The first thought that comes to mind is that this
constant Q! is the lowest free-particle state for
periodic boundary conditions with a periodicity cube
of volume ©; hence one is tempted to look for solu-
tions ¢, which differ from plane waves © ¥¢*** only
in the boundary layer, where they fall to zero. How-
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ever, no such solutions of (A6) can exist for k = 0,
since such a solution would have current k = 0
in the interior but zero current at the walls (since
¢ must vanish there), thereby violating the equation
of continuity. The way around this difficulty is,
following Schafroth, to note that the constant Q%
is also the lowest solution satisfying homogeneous
Neumann boundary conditions (55). The free-par-
ticle orbitals ¢, [(56), (57)] satisfying this boundary
condition are real and therefore have zero current,
so that no contradiction arises if one modifies such
¢x in the boundary layer so as to make them vanish
on the walls. We therefore make the ansatz

ex(®@) = ei@IL + x(@)], (A30)

where oY is what is called ¢, in (56) and (57),
namely the free-particle orbital satisfying the Neu-
mann condition (55). We then seek solutions of (A6)
for which x, is negligible in the interior of the box,
but

(A31)

generalizing (A9). The appropriate generalization
of (A10) is found with the aid of (A30), (56), (57),
and (A6) to be

(= 3V + 3" + V@ + k. tan [k(z + 30)18/0z
+ k, tan [k,(y + 3L)]0/dy
+ k, tan [k, (z + 21)]0/02 — e }xx(X)
= & — ¥ - V@,
where V(x) is the same as in (A11) (with xo, not xx)
and we have assumed that all components of k are
nonzero, since the exceptions form a set of measure
zero. Since we are seeking a solution for which x;
vanishes in the interior, where V(x) = pv, by (All),

it is clear that the appropriate generalization of
(A12) is

xx(x) = —1 on the walls,

(A32)

e = pvo + 1k + O(/QY). (A33)

As in the case k = 0, we assume x to be near the
wall z = +31L but not near an edge or corner,
and hence seek a solution g, depending only on z.
Then, introducing the new variable

t =1L — z, (A34)
one finds by (A32), (A34), and (Al1)
=395 + 2000g0(O[1 + 390(D]gx(D)
+ k. tan (k.8)g£(9)
= —2pnego()[1 + 390(1)], (A35)

where go(t) = xo(z) and g« () = xx(2).
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In the interior we can insert the approximation
(A17), (A19), which in the present notation reads

gold) = goMNe *“ ™ = —0.17*“ ™, ¢t >\, (A36)

and can negleet 2g,(f) compared to unity in the
terms 1 4 2g,(¢); however, the term go(t)gx(f) in
(A35) cannot be neglected due to the singularities
of tan (k.t) at k.t = i, 2, - - - . Then (A35) becomes

—39%() + k. tan (k.)gi(t)
— 020006 "™ gx (1)

= 0.2000¢ *“ ™, t >\ (A37)

In view of the singularities of the differential equa-
tion (A37) at k.t = im, §m, --- , it is convenient
to make a change of variables; since the properties
of the hypergeometric equation are very well known,
it is convenient to choose the new variables so that
the transformed differential equation resembles the
hypergeometric equation as closely as possible. This
is achieved by the substitutions

u = 31 — sin (k.D)],
Yu(w) = 1+ g:(0).
Then (A37) becomes a homogeneous equation
u(l — wWyk@) + 31 — 2u)yi)
+ (0.4pvo/kDe e k7T M gy () = 0,  (A39)

which differs from the hypergeometric equation only
through the presence of the exponential factor in
the last term. The only singularities are at u = 0, 1,
and «; 4 = 0 corresponds to kit = =/2, 57/2,
97r/2, --+ , u = 1 corresponds to k.t = 3%/2, 7r/2,
11#/2, - -+ , whereas u = o is not relevant because
0 < u < 1 for real ¢t. The indicial equation*® at u = 0
is the same as that for the hypergeometric equation,
and the conclusion is therefore the same: of the
two linearly independent solutions which must be
combined to form the general solution Y, oneis
analytic at « = 0 and the other is equal to »™*
times a function analytic at w = 0. It follows that
at kit = #/2, 5n/2, --- , gu(t) will behave like
[1 — sin (k.£)]!. However, we note from (A30), (57),
and (A34) that in obtaining ¢y, gx is to be multiplied
by cos (k.f) = =[1 — sin® (k.f)]!. The product
therefore behaves like

[T — sin (k8] 71 — sin® (k0]
= [1 + sin (k)] = 2}

fi

(A38)

48 See, e.g., . T. Whittaker and G. N, Watson, A Course
of Modern Analysis (Cambridge at the University Press,
Cambridge, England, 1927), 4th ed., Chaps X and XIV.
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at kt = =n/2, 5x/2, --. , i.e. these singularities
of gx do not cause any singularities of ¢;. A similar
argument applies to the points k.t = 37/2, 7x/2, - - - .
In fact, we shall find that the only effect of the
singularities of g, in the interior of the box is to
cause a small displacement of the nodes of ¢, away
from the positions of those of the unperturbed fune-
tions (56), (57), the amount of the displacement
decreasing as one recedes from the walls, which are,
in fact, responsible for the perturbation [gy was in-
troduced in order to take into account the effect
of the requirement that ¢, must vanish at the walls
instead of satisfying (55)].

In order to see this more clearly, it is convenient
to make the substitution

gx = hx sec (k,t) — 1. (A40)
Then (A35) reduces to
R + (K2 — 4pvogo(t)
X [1+ 29O h(t) = 0. (Ad1)

Although this cannot be solved analytically for
general values of k,, if k, >> A7 (A is the distance
in which g, varies appreciably) one can use the
WKBJ approximation:

he(t) = A sin {[k — U3t}

+ Bcos {[k2 — U@}, (A42)

where
Ut) = 4pvogo(O[1 + 3g0(1)].

Then, since g (0) = —1 (s0 ¢ vanishes at the wall),
it is necessary to take B = 0. Furthermore, normal-
ization and reality require A = =1, and since g,
increases from —1 as ¢ recedes from the wall one
must choose A = +-1. But since ¢y is proportional
to (1 4 gu) cos (k.t) = hy, whereas ¢% is proportional
to cos (k.f) [see (A30)], one concludes that far in
the interior the only perturbation of the Neumann
free-particle solution due to the wall and the self-
consistent field is a phase shift of =/2.*°

Although we have not been able to give rigorous
derivations because of the nonlinearity of the Har-
tree-Fock equation, we believe that the foregoing

(A43)

49 There is also a small secular phase shift beyond the
accuracy of the WKBJ approximation, which is negligible
over distances small compared to L (the length of the box)
but accumulates to another ir by the time one reaches the
center of the box. This can be seen from the fact that in the
neighborhood of the center of the box (¢ = 3L) one must
take A = 0, B = 1 in (A42) in order to satisfy the require-
ment that ¢ be even or odd under reflection about the center
of the box according to whether Lk./x is an even or an odd
integer.
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analysis shows fairly convincingly that the Hartree—
Fock orbitals ¢, the solutions of (A4) and (A6),
differ from the free-particle orbitals (56), (57) satis-
fying the Neumann boundary condition (55) only
through a distortion in a microscopic boundary layer
near the walls (so as to vanish there) plus a thermo-
dynamically negligible phase shift (microscopic shift
in the positions of the nodes). Although the analysis
was carried out for the special case of a repulsive

M. D. GIRARDEATU

delta-function interaction, one expects the same be-
havior for any finite-range repulsive interaction
whose Fourier transform exists, since the “wall
potential” V(x) — pv,, where v, is the Fourier trans-
form of the interaction at k = 0, will be of the same
qualitative form in such cases. It is much less clear
how much “attractive tail”’ the interparticle inter-
action may have without disturbing these conclu-
sions.
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there remains a twofold degeneracy in the spherical harmonic Y;,, when j and m are specified.

L. INTRODUCTION

ET J, be a set of Schrodinger-type operators
defined by

J, = i(cot 8 cos $3/d¢ + sin $3/6),
J2 = i(cot 0 sin ¢3/d¢ — cos $3/96),
Js = —18/9¢, 0

where 6 and ¢ are, respectively, the usual polar and
azimuthal angles locating a point P on the surface
of a sphere. The J, operate upon one-component
complex functions ¥ which depend only upon 6 and ¢.
Now, while ¥ and J, bear a formal similarity to
the wavefunctions and orbital angular momentum
operators of ordinary nonrelativistic quantum me-
chanics, it is known that we need not interpret them
in this way. Instead, we may regard the J, simply
as generators of the infinitesimal rotations associated
with the three-dimensional rotation group 0(3), and
may regard the ¥ simply as elements of a vector
space (function space) upon which the J, are defined.

‘We wish to consider the functions Y ;,.(8, ¢) which
satisfy the equations

(J2 + ’]2 + J)Ylm =
J3Yim

iG + DY,

= mY,',,.,

@)

and which provide the basis for a (2j+1)-dimensional
irreducible representation D’ of O(3). It is well
known that, for integer values of j, the Y,, are
the familiar single-valued spherical harmonics. They
provide a basis for the tensor representations of
0O(3). The spherical harmonics for half-integer values
of j are also known.' They are double-valued func-
tions of P. It is generally believed, however, that
they fail to provide a basis for the genuine spinor
representations of 0(3). We shall show that this
belief is incorrect.

It is convenient to begin by recalling, briefly, why
double-valued quantum mechanical wavefunctions
have conventionally been regarded as inadmissible.
Schradinger” originally required that wavefunctions
be single valued because he believed that they must
correspond directly to some observable property of
a physical system. Pauli® early recognized that, since
wavefunctions correspond only indirectly to observ-
ables, there is no @ priori reason why they must
be single valued. (In this spirit, Bohm* has remarked

1J. M. Blatt and V. F, Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952), p. 783.
? E, Schrédinger, Ann. Physik 79, 361, 489 (1926).
3 'W. Pauli in Handbuch der Physzk edited by Geiger Sheek
(Verlag Juhus Springer, Berlin, 1933), Vol. 24, p. 121.
Bohm, Quantum Theory (Methuen and Company,
Ltd London, 1934), p. 104,
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that, logically, one can only demand that wave-
functions shall satisfy conditions which insure that
the average value of every observable is single
valued.) Pauli initially argued, however, that multi-
valued wavefunctions give rise to sources and sinks
of probability current, and so are physically inad-
missible. It is this argument of Pauli’s to which
Blatt and Weisskopf® refer, although they attribute
it to Nordsieck. The argument also appears in other
current textbooks,® although Pauli’® later recognized
that it is incorrect. He noted that there is a large
class of multivalued angular momentum eigenfunc-
tions with well-behaved probability currents, and
that the double-valued spherical harmonics are of
this class. Pauli then gave another argument in
which he concluded that only single-valued wave-
functions are admissible. He considered only single-
valued and double-valued functions as possibilities
because Schrodinger” had shown that only these be-
have properly under time reversal. (One can also
exclude all other functions by noting that it follows
from purely abstract arguments® that the J, have
only integer and half-integer eigenvalues. Only sin-
gle-valued and double-valued functions correspond
to these eigenvalues.) The quadratically mtegrable,
but not normalized, spherical harmonies for m = j
are of the form

Y,',' = (Sin 0)iéii¢o (3)

Let J* = J, = 4J, be the usual raising and lowering
operators. We obtain the functions Y, for m equal
toj — 1, , —j by repeated application of J~
to Y;,. Thus, form = j, --- , 1 — j we write

J_Yim = Niin.m—I) (4)

where N,,, is an arbitrary constant. For convenience,
we take N;n = [(G + m)(§ — m + 1)L Upon
applying J* to both sides of Eq. (4) and using the
identity

J T Yim =[G m)GFm+ DIY;m, ()
we find that
JYim=[G—mG+m+ DY, (®)

form=j—-1, , —J

Now let 8; be a function space which is spanned
by the basis functions Y, for a given value of j.
Pauli rejected the Y, with half-integer j because

5 R. M. Sillito, Quantum M echanics (Edinburgh University
Press, Edmburgh Scotland, 1960), p

¢ W. Pauli, Helv. Phys. Acta 12, 147 (1939)

7 K. Schrodinger, Ann. Physik 32 49 (1938).

8 L. I. Schiff, Quantum M echanics (McGraw-Hill Book
Company, Inc., New York, 1955), 2nd ed., p. 141.
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they fail to satisfy his requirement that the applica-
tion of J, to any element of 8; shall lead again to
an element of §;. Pauli’s reason for making this
requirement is contained in his assertion that, other-
wise, no unambiguous correlation between Schré-
dinger operator calculus and matrix calculus would
exist. In particular, he asserted that the Y, with
half-integer j fail to provide the basis for an irre-
ducible representation D’. We shall show that these
assertions are false.

We wish to emphasize that we have no quarrel
with Pauli’s conclusion concerning the inadmis-
sibility of multivalued quantum mechanical wave-
functions, although we take issue with the argument
through which he reached that conclusion. Indeed,
we have shown® previously that the components of
linear momentum are not simultaneously observable
if multivalued functions are admitted. A simpler
argument leading to the same conclusion may be
mentioned here: If the components of linear momen-
tum are simultaneously observable, then any ad-
missible wavefunction must be expressible by a
superposition of their simultaneous eigenfunctions.
Such a superposition is just a Fourier integral, which
is always a single-valued function.

On the other hand, we wish to emphasize that
the Y;, with half-integer j do, in fact, yield an
unambiguous correlation between operator caleulus
and matrix calculus; and that they do provide the
basis for an irreducible representation D’ of O(3).
We shall see that if scalar products are defined as
in ordinary quantum mechanics, then the representa-
tion D’ is unitary for j = %, nonunitary for j =
%, %, -+ - . However, a slight change in the definition
of the scalar product results in all representations
being unitary. Finally, we shall show that when j
and m are fixed (at either integer or half-integer
values) there remains a twofold degeneracy in the
corresponding spherical harmonie.

II. A CRITIQUE OF PAULI'S ARGUMENT

Let the Dirac ket vector |jm) correspond to Y,
and let (jm| be its conjugate imaginary bra vector.
An arbitrary bra vector (¥| may be expressed in
the form

Z M @)

@l = i Gm | Jm)

Now, suppose that we have a given function ¥,
and that we wish to find the bra vector (¥| which

corresponds to it. If scalar products are defined as

® D. Pandres, Jr., J. Math. Phys. 3, 305 (1962).
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in ordinary quantum mechanics; i.e.,
2x L
<\p|q>>=f | w @ sin 0 do d, @®)
[} [¢]

then (¥|jm) vanishes if ¥ and Y, are orthogonal.
But, suppose that ¥ is orthogonal to all of the ¥,
for the given value of j. It is then clear from Eq. (7)
that (¥| = 0. Indeed, Dirac'® has pointed out
explicitly that “a bra vector is considered to be
completely defined when its scalar product with
every ket vector is given; so that if a bra vector
has its scalar product with every ket vector vanish-
ing, the bra vector itself must be considered as
vanishing. In symbols, if (P|A) = 0, all |4), then
(P| = 0.” It is precisely this point which is not
taken into account in Pauli’s argument.

Pauli’s assertion that the functions Y,,, with half-
integer j fail to provide a basis for a representation
D7 rests upon the fact that although J*Y;; vanishes,
the function

Q=JY, )
does not vanish. It is not an element of §,, and it
is certainly inadmissible because it is an eigenfunc-
tion with a negative eigenvalue of the nonnegative
definite operator J2 + J;. We wish to point out,
however, that @ is orthogonal to every element of §;
(because of its ¢ dependence, which is just ¢ **V¢),
It is therefore clear that @ is a representative of
the vanishing bra vector even though it is not of
vanishing functional form. Furthermore, if J~ is
applied repeatedly to @, the result is always a rep-
resentative of the vanishing bra vector. It seems
at first glance that if J* is applied to @, this must
lead back into 8;. This would be unsatisfactory since,
for example, the matrix representing J*J~ on the
8; basis would not equal the product of the matrices
representing J* and J~ on the same basis. There
is no problem, however, because Eq. (5) insures
that J*@Q vanishes identically. We see that although
the J, lead us out of §;, they can never lead us
back in again.

It is instructive to examine the representation
of finite rotations on the §; basis. Every element
of 8; is of the form

i
\I, = Z Cinm(a) ¢)7

me —

(10)

where the C, are constants. Consider a rotation
through the angle B about an axis specified by the
unit vector n. The corresponding rotation operator is

U = exp (— iBn-]). (11)

10 P, A. M. Dirac, Quantum Mechanics (Oxford University
Press, New York, 1958), 4th ed., p. 20.
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It is obvious that U does not transform ¥ as a scalar.
The point is that U¥ is double valued on encircle-
ment of the § = 0, = axis, while the function ¥
which results from rotating ¥ as a scalar is double
valued on encirclement of some new 8 = 0, = axis
into which the 6 = 0, r axis has been rotated.
By the transformation of ¥ as a scalar, we mean
that ¥ depends upon 8, ¢ in the same way as ¥
depends upon 8, ¢ and that 8, & are referred to
rotated axes in the same way as 6, ¢ are referred
to the original axes. Thus, we have

\T, = "L: Cinm(§,$)- (12)

Notice that ¥ may be regarded as a function of
6, ¢, n, and the rotation angle B. When ¥ is expanded
into an infinite series in powers of B, there is a
nonvanishing remainder term. Because of this term,
the series converges not to ¥ but rather to UV.
This establishes an interesting functional correspond-
ence between ¥ and U¥, and enables us to obtain
a double-valued function by superposition of any
two double-valued functions. For example, the func-
tion ¥ + UV is only double valued although the
function ¥ + ¥ is four valued.

Now, the function U¥ is not an element of §;.
We find instead that

U( 3 C Y,-,,,)

m=—g

= Z Cﬂ,lYim+R:

m=—g

(13)

where R is a representative of the vanishing bra
vector. The constants C. are given in terms of the
C.by

Ve = ¢, (14)
where C is the column matrix
(o)
LC-,)
C’ is the column matrix
r C;
\CZ;)
and V is a unitary matrix given by
V = exp (— iBn-d). 15)

Here the components o, o, 05 0f 6 are the Hermitian
matrices which comprise the well-known spinor rep-
resentations of 0(3). For example, if j = %, we have
the Pauli matrices
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Ul=%[0 1} 02=%{0 -—z} 63=%[1 0}
1 0 i 0j 0o -—1

(0 v8 0 0
V3 0 2 0
g, = 3 )
0 2 0 V3
0 0 V3 0
(0 —v3 0 0
VB 0 =2 0
gy = 3 )
2 0 —v3i

30 0 o
01 0 0o
03=§ .
00 —1 0
00 0 -3

The importance of Eq. (13) lies in the fact that
it establishes a functtonal interpretation for the
genuine spinor representations of 0(3). If, in Eq.
(4), we had chosen some other value for the con-
stant N;,, the matrices o, would have been non-
Hermitian corresponding to a nonunitary irreducible
representation of 0(3).

If one uses the standard formulas of guantum
theory to compute matrices M, representing the
J,, one finds that the element in the rth row and
cth column of M, is

(M)ee = (| Ja [¥)/ (e | 9 | 9,

where ¢, = Y; ;¢1-,. One finds that the M, obtained
in this way do indeed provide (2j + 1)-dimensional
irreducible spinor representations of O(3). The M,
are Hermitian for j = 3, but are not Hermitian
for j = 4, 4, - - - . This means that the corresponding
representations are unitary for j = %, nonunitary
for j = 2, §, --+ . The nonunitary arises because
{jm|jm} is infinite for m = —4§, —%, --- , —j. But,
it is well known'' that it is always possible to re-
define the scalar product such that the representa~
tions to O(3) are unitary. Let us consider how this
can be done.

(16)

1 T, M. Gel'fand and Y. Ya Sapiro, “The Representations
of the Group of Rotations in Three-Dimeunsional Space and
their Applications,” Am. Math. Soc. Trans., Series 2, Vol. 2
(1956).
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We let [¥) be represented in the usual way by ¥,
but instead of letting (¥| be represented by ¥*,
as is customary, we let (¥| be represented by (G¥*),
where G is an operator whose properties are to be
determined. (The situation is rather similar to that
which exists in field theory where ¥1 differs from ¥ *.)
Thus, instead of Eq. (8), we write

@ | @) = fo f GU)*®sin 640 ds.  (17)

If the space $; is to be a Hilbert space, we must have

(T |2 =(2|¥)* (18)
This just requires that
2r L3
f f [(GY)*® — W*Gd]sin 6d6de = 0,  (19)
0 0

ie., that @ be Hermitian in the sense of ordinary
quantum theory. We now define @ by requiring that

(W | ¥o) = b, (20)
where §,, is the usual Kronecker symbol. It follows
from Eq. (20) that the element in the rth row and
cth column of the matrix representing @ is just

G.. = (87, (21)

where S7' is the inverse to the matrix of overlap
integrals; i.e.,

S,. = f f Yy, sin 6 d8 do.

With this choice of @, the M, generated by Eq. (16)
reduce to the Hermitian ¢, of Eq. (15). We mention
in passing that G plays the role of a metric in a
Hilbert space whose covariant and contravariant
basis vectors are the (¥, and [¢,), respectively.
Notice that if ¥ = Z Cab, and ® = Z K.y, then

(¥ |® = 3 CK., 23)

as one would expect. Notice also that, for the spaces
8; considered in this paper, G and S are diagonal
matrices which reduce to the identity if the ¥, are
normalized to unity.

III. DEGENERACY OF THE SPHERICAL
HARMONICS

We wish to point out that, instead of defining
Y.; as in Eq. (3), we could have written

Yii = aiY?i + a_*Y;?,

(22)

(24)
where

Y = (sin 6)',

cosd
Y_,? - (SlIl o)ieiinﬁf (1 - x2)-(i+1) dz,
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and a; and a_; are arbitrary constants. Equation (24)
gives the general solution of Eq. (2) for m = j.
It is clear that Y}, and Y3 are linearly independent
for both integer and half-integer j, because they are
even and odd functions of cos 6, respectively. The
point is that a spherical harmonic is not uniquely
determined when j and m are specified. A twofold
degeneracy remains because the invariant operator
J? + J: + J3 involves second derivatives with re-
spect to 8. We may remove this degeneracy by
classifying our functions by eigenvalues A of the
operator K, defined by :

K3Y?m = AY,)'\m- (25)

We have, as yet, no operator connecting Y*, and
Y;}. However, we may define such operators K* =
K, &+ <K, by the relations

K*yv;} =7},

DAVE PANDRES, JR.

K vi =Y}

K'Y, =KY;}=o0.

(26)

The matrices which represent K, on the basis Y3,
Y;} are just the Pauli matrices. Notice that the
K, commute with all of the generators J, of O(3).
This implies that the symmetry group SU(2) cor-
responding to A degeneracy is independent of the

three-dimensional rotation group.
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The method of moments is used to derive the reduced-width amplitude distributions. The explicit
dependence of the distribution function on the dimension N of the random orthogonal matrix for
large values of N is obtained. It is shown that in the limit N — e, the distribution is the same as the
one obtained using the explicit assumption of level independence.

1. INTRODUCTION

HE multivariate reduced-width amplitude dis-

tribution was derived by Krieger and Porter
using the assumptions of level independence and of
functional form invariance of the distribution. It
was pointed out by Dyson’ that the assumption of
level independence is quite unphysical.

An important consequence of the invariance hypo-
thesis is that the eigenvector components of a random
Hamiltonian matrix are distributed independently
of its eigenvalues.® This fact was used to calculate
the correlations of the Hamiltonian matrix ele-

1 T. J. Krieger and C. E. Porter, J. Math. Phys. 4, 1272
1963).
( ¢ F, J. Dyson, J. Math. Phys. 3, 140 (1962). .

¢ C, E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fen-
nicae A6, 44 (1960).

ments.”® Using a suggestion due to Rosenzweig,"
a general technique has been developed to obtain
the averages of the components of random orthog-
onal vectors.® A knowledge of these averages enables
one to calculate the various moments of the re-
duced-width amplitudes. These moments are then
used to determine the distribution of the reduced-
width amplitude. This approach has the advantage
that it shows the explicit dependence of the dis-
tribution function on the dimension N of the random
orthogonal matrix for large values of N. It will be
shown that the multivariate reduced-width ampli-
tude distribution i the limit N — o« is the same

¢ N. Ullah and C, E. Porter, Phys. Letters 6, 301 (1963).

§ N. Ullah, Nucl. Phys. 58, 65 (1964).

¢ N. Rosenzweig (private communication); Phys. Letters
6, 123 (1963).
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shown that the multivariate reduced-width ampli-
tude distribution i the limit N — o« is the same

¢ N. Ullah and C, E. Porter, Phys. Letters 6, 301 (1963).

§ N. Ullah, Nucl. Phys. 58, 65 (1964).

¢ N. Rosenzweig (private communication); Phys. Letters
6, 123 (1963).
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as the one obtained using the level-independence
hypothesis.

The reduced-width amplitude v,. for level A and
channel ¢ is given by

(o
Yre = 2mcac

) [ xetas, 0

where m, is the reduced mass, a. the channel radius,
¢. the channel function and X, the wavefunction
of the compound system.

Expanding the wavefunction X, in terms of a
convenient set of basic functions ¢, we can write
Eq. (1) as

Yre = Z au)\Jucy (2)

where

R\
T = (52=) [ et as,

and a, (1 < u < N) are the components which
express the wavefunction X, in the chosen representa-
tion. The components a,, behave like the compo-
nents of randomly oriented unit vectors. The N X N
‘random orthogonal matrix is formed from N such

random unit vectors.

2m\

N N 2m N
f 6(2 alzl)\ - 1)(2 au)\Juc) H dan)\
u=1 p=1 p=1
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II. SINGLE-CHANNEL DISTRIBUTION

The distribution of the reduced-width amplitude
vro Was derived by Porter and Rosenzweig® from a
knowledge of the eigenvector component distribution
and the application of the central limit theorem.
Later Rosenzweig® had indicated that the standard
results of the theory in the limit N — o can be
obtained from a knowledge of the distribution of
the orthogonal matrix. In particular he had derived
the single-channel Porter—Thomas distribution. How-
ever, his method does not give the explicit depend-
ence of the distribution on N, for large values of N.
Further, one does not know how to get the results
for the multilevel case directly from the eigenvector
component distribution. The method of moments
which we follow here not only gives the explicit de-
pendence on N but can also be used easily for the
multilevel case. The moments of the reduced-width
amplitude v,, are calculated using the averaging
technique deseribed in Ref. 5. The derivation of the
distribution makes use of the well-known results of
the problem of moments.” It is shown that our dis-
tribution in the limit N — o« gives the results
obtained by Porter and Rosenzweig.?

The ensemble average of v,. using Eq. (2) can be
written as

Ae

The odd moments of ¥, vanish. Putting in the value
of the denominator in expression (3) and after some
simplification,® we get ‘

(72{?? =: %iwr(;‘%-?_ 2m)) [(5%)’"'

N @
X I1 [ o[- @+ aluanldon|

p=1 =0

which gives

omy rGN)r@2m + 1) 2 \"
&) = FTEW + 2m)Tm + D <Z ) @

It can be easily checked that the set of moments
given by expression (4) satisfy Carleman’s criteria,’
and “therefore should determine the distribution
uniquely.

Using Sterling’s formula to expand the gamma
function for large values of N, we get

- N 3)
f 5(; TG — 1) I1 da.
o) = [1 ty -t '”)] % @I,
6)]
where
= 1 i J?
=N P

u=l
The characteristic function of the distribution ¢ (t)
is given by
— - (’l’t)zm 2m

Using expression (5) it can be expressed as
o(f) = [L — Jit*/4N] exp (— 3J.1°). (6)

" M. G. Kendall and A. Stuart, The Advanced Theory of
Statistics (Charles Griffin & Company, Ltd., London, 1958),
Vol 1, Chap. IV; H. Cramer, Mathematical Methods of Sta-
tistics (Princeton University Press, Princeton, New Jersey,
1946), p. 176.
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Using the inversion theorem’ we find that the
frequency function f\(y,.) is given by

fx(‘}’)\c) = (27|'Jc)_l=L

X [1 — __1_ (ﬁ — 6_7& + 3):|e—%(nc’/.lc) (7>
4N \J? J. .
If we now take the limit N — «, we get the result

hine = @rd )™ exp (— %./7), (8)

which is in agreement with the earlier result.'*®
We next consider two levels A\, ' and write the
bivariate moment

2m 2n> _ T(N— 1)

AYre) = N—2 N—-1
2"

X f (Z auXJ#c)zm(Z a#)\’Juc)zn
X 8(2 ai — Do(X e — 1)

TN - 1)

NAZAKAT ULLAH

X 5(2 a;&)\au)\') H dau) da”)', (9)

where 2"’z '/T(N — 1) is the value of the
integral®

[aS e - naSan -
X 6(2 aukap)\’) II da“). da“)".

The derivation of the bivariate characteristic fune-
tion is a little more involved than the univariate
characteristic function and therefore we shall only
indicate the essential steps of the derivation.

After some mathematical manipulation and using
a simple substitution

A\ = (1/\/2)@# - QM)r Guxr = (]/\/é)(p# + QM)y

we can write expression (9) as

2m 2»)

<‘Y AN

T VNP AN + 2m — DTGV + 20 — 1) [(;_a)m@_ﬂ)
X f exp {— Z [pi + g + % @+ 8)J,.p. — % (@ — ﬁ)Jqu]}él; @ — @) l;I dp. dqn]u

=f=0

Using the Fourier transform of the § function and carrying out the p and ¢ integrations, we get

N -1

A

T 9 IRV 4 2m — D)TGW + 2 — 1))

X [ a4 0 exp [ 30+ 8@ 4 S0+ a4 0esE 72 |}

(GG

a=f=0

Carrying through the indicated differentation and the integration over k, we get

TN — 1D(Em)!(2n)!

2m 2n>

(’)’ AT

where the summation over j goes from 0 to m or n,
whichever is smaller. If n is put equal to zero, expres-
sion (10) reduces to expression (4), as it should.

Using Stirling’s formula to expand the gamma
function for large values of N, expression (10) can
be written as

Gy = @m)!2n)1GJ )™

1 1 1
X [7[177 - N{(m o)l
1 9
e =1 T m =Dl = 1)!}]'

+ (11)

T gV (N + 2m — DTGV + 20 — D)DGAY + 2m + 2n))

m—w—p5 0 10

The bivariate characteristic function ¢ (¢, ') is then
given by

¢(t, ) = [1 — (Jo/AN)(# + )]
X exp [— 38 + 9] (12)

From expressions (12) and (6) we see that ¢(¢, ¢')
cannot be expressed as the product of ¢(f) and
¢(t), except in the limit N — o. Therefore in the
limit N — o, the joint distribution of v,., vx-c can
be written as a product of two normal distributions.
Thus the joint distribution of the reduced-width
amplitudes for the single channel ¢, in the limit
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N — o, can be written as

) = @I )7

X exp |:— 2:170 (AZ 'Y:“(v):‘y (13)

where [ is the number of levels. This is in agreement
with the result derived by Krieger and Porter.'

Pc(‘Yl‘cy Y2er """

III. MULTICHANNEL DISTRIBUTION

The multichannel distribution can be obtained in
the same way as single-channel distribution. Let us
consider a level A and m channels ¢, ¢/, ¢/, - - - , then
the multivariate moment {(yy:v},. - - - ) can be worked
out in the same fashion as {(y7') given by expression
(3). In the limit N — «, we find that the multi-
variate characteristic function ¢(t), where t is m-
dimensional vector, can be written as

o(t) = exp [— 3(I=1)], (14)

where 2 is m X m matrix, called the covariance
matrix and is defined as®

(15)

The frequency function fy(y,) is then the m-
variate normal distribution®

hle) = @0 |2 exp [— 3@®Z7'n)],

z = <‘h‘?x> .

(16)

8T, W. Anderson, An Introduction to Multivariate Sta-
tésﬁical If%nalysis (John Wiley & Sons, Inc., New York, 1958),
ap. II.
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where |Z| is the determinant of the covariance
matrix Z.

We have shown in Sec. II that in the limit N — o
the joint characteristic function of v, 7. can be
written as the product of two characteristic func-
tions, one belonging to v\, and the other to v...
This together with (14) and (16) implies that the
joint distribution P,....... can be written as

P”'c ..... = IJ: f)\(‘Ys.)-
IV. CONCLUDING REMARKS

In Secs. IT and IIT we have used the method of
moments to derive the reduced-width amplitude dis-
tribution for a system invariant under an orthogonal
transformation. In a similar way we can derive the
results for the unitary and symplectic ensembles
defined by Dyson.? In the limit N — o, these dis-
tributions agree with the ones derived using the
explicit assumption of level independence.’

The various correlation coefficients can be exactly
worked out using the expressions (4) and (10). These
values agree with the ones obtained earlier.'” In the
limit N — «, they give the level-level correlation
to be zero and the width channel-channel correlation
to be square of the reduced-width-amplitude chan-
nel-channel correlation, which is in agreement with
the earlier results.’

® N. Ullah, J. Math. Phys. 4, 1279 (1963); Phys. Letters 7,

153 (1963).
10N, Ullah, Nuel. Phys., 64, 349 (1965).
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A condition sufficient to secure the existence of a least one bound state for each angular momentum

{ < L is given by the inequality

=& d(gr)V(r)/l(ar)te® — (gr) 2PV (r)] > 1,
where ¢ is an arbitrary constant and V(r) an everywhere-attractive potential.

1. INTRODUCTION

ECENTLY we have given certain simple con-
ditions on an attractive central potential which
are sufficient to guarantee the existence of at least
one bound state for each angular momentum smaller

than a given one.' In this paper we derive another
condition to the same effect. This condition is best
possible, i.e., for each [ there exists a potential

L F. Calogero, J. Math. Phys. 6, 161 (1965), hereafter re-
ferred to as I.
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(in fact, a one-parameter class of potentials) which
saturates it. These potentials are given explicitly;
or S-waves we find a Hulthén shape. Units are
defined so that # = 2m = 1, m being the mass
of the particle considered.

2. ON THE POLES OF A RICCATI EQUATION
Consider the Riccati equation
¥ () = f@)g=) + y@)Y,
with boundary condition
y(0) =0,

and with the following limitations on the real func-
tions f(z), g(z):

(2.1)

(2.2)

fx) 20, (2.3a)
g(0) =0, g =0, (2.3b)
g'@@) = 0. (2.3¢)

We now prove the following

Theorem. A sufficient condition for the function
y(z) to have at least one pole within the interval
of the real axis between 0 and X > 0 is that there
exists a value of the positive constant ¢ such that

[ &g/ r@ + @1 > 1. @4

The proof is very simple. Introduce the function
Y (z) through

y@) + 9@ = QY@)/[1 — Y@  @25)

Note that this implies that Y (z) varies between zero
and one while y(z) varies between zero, for x = 0,
and infinity. We now show that the hypothesis,
Eq. (2.4), implies that Y(X) is larger than one,
thereby proving the theorem. In faet the differential
equation satisfied by Y{(r) is

Y(z) = Q¢ @[l ~ Y@ + Qf@)Y’(x), (26)
with boundary condition
Y(0) = 0, 27

as implied by Egs. (2.1), (2.5), and (2.3b). But
Eq. (2.6) implies

Y'(z) 2 ¢ @f@)/[Q7¢' (@) + Qf@@)].  (28)

This equation is obtained simply taking the min-
imum value of the right-hand side of Eq. (2.6)
[at this stage use is made of the conditions Eqs. (2.3a)
and (2.3¢)]. It follows, through Egs. (2.7) and (2.4),
that

Y(X)> 1.

This completes the proof.

2.9)

F. CALOGERO

3. APPLICATION TO THE BOUND-STATE
PROBLEM

The condition for the occurrence of at least one
bound state with angular momentum [ corresponds
to the requirement that the solution of the Riceati
equation

ai(r) = —@2l + )7 [V()/q]

X (@' + e, G0
with boundary condition
a;(0) = 0, (3.2)

has at least one pole on the positive real axis.''
Here ¢ is an arbitrary constant and a,(r) is connected
with the phase function §,(r) by the relation®

az(?’) = (23 + 1)3!(22 - 1)!! lim (tg&l(r)(q/k)zl«n}’

(3.3a)

where k is the linear momentum. The function a,(r)
is also simply related to the logarithmic derivative
of the zero-energy radial wavefunction «,(r) through

ar) = (@' 0+ 2+ D/ =N (3.3b)
with
) = —rui(r)/u(r). (3.3¢)
Assuming that the potential is attractive
Vi) = =V, (3.4)

we may immediately apply the theorem of the pre-
ceding section. Setting @ = (2L 4 1) we obtain,
as a sufficient condition for the existence of at least
one bound state with angular momentum L (and
therefore also at least one for all [ < L), the in-
equality

f © dgr) |Vr)]
o (@)"d + (g7 V)]

It is easy to derive the potentials which saturate
this condition, by enforcing the equality sign in
Eq. (2.8). We find

Vilr) = —(1 + e¢*(gn*”
X [exp {(gr)**"'@L + 17"} = 117,

These potentials, while possessing at least one bound
state for each angular momentum ! < L, have the
property that they, when substituted in the integral
of Bq. (3.5), yield values which may be made ar-

2 F. Calogero, Nuovo Cimento 27, 261 (1963); B. R. Levy

and J. B, Keller, J. Math. Phys. 4, 54 (1963); R. F. Dashen,
ibid., p. 388.

> 1. (3.5)

e>0. (3.8)
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bitrarily close to one by the choice of a sufficiently
small e. Note that the constant ¢ is arbitrary.
For S-waves the potential takes the Hulthén shape

Vo(r) = —(1 + &g°/le*" — 1], (3.7)
while the condition Eq. (3.5) becomes simply
" d(gn) |V(r)
. P vor > 38)

For a general potential this condition may be more
or less stringent than those given in I. For instance,
for an exponential V(r) = —|V,| exp (—r/ry) it
yields :

5 |Vo| = ¢/In* (1 + o), (3.9)

where ¢ = |[V,|/q® is an arbitrary constant. The
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optimal choice ¢ = 3.92 yields 75 |V,| > 1.54. This
is a more stringent condition than that obtained
in I, and is quite close to the exact minimum value
for the existence of one bound state |Vo| rj = 1.44.
On the other hand for a square-well potential of
depth |V,| and range r, we obtain at best the condi-
tion |V,| 75 > 4, which is less stringent than the
one obtained in I. This condition corresponds to
q* = |V,|. It is remarkable that these optimal choices
of ¢ depend on the strength but not on the range
of the potential, contrary to what happened in I.

Finally we note that the theorem of Sec. 2 provides
also an upper limit for the energy of the lower bound
state for each angular momentum, when applied to
the relevant Riceati equation, in analogy with what
was done in I.
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The theory of diffraction of elastic waves is developed for the case of two homogeneous elastic
media, welded together at an interface of arbitrary shape. The Green’s function of the problem, de-
fined to be the displacement at a point P;, caused by a periodic force at a point Py, is expressed in
terms of the displacement and tension on the interface. A set of Fredholm integral equations for
these interface functions is obtained. From them a variational principle is derived which gives the
Green’s function, minus the ‘“free’’ Green’s function, as the stationary value of a functional. It is
analogous to the variational theorem of Levine and Schwinger for optical diffraction at an aperture
in a screen. The variational equations of this functional are the above-mentioned integral equations.
Explicit expressions are obtained for the case of isotropic elastic solids and for liquids. A generaliza-

tion to the case of pulsed waves is indicated.

1. INTRODUCTION

ITH an eye on applications to seismic explora-

tion, the theory of the reflection of waves from
an interface between two homogeneous elastic media
will be further developed. In cases of interest the
problem is often one of diffraction, as the wave-
lengths produced in an explosion can well be com-
parable to the lengths characterizing irregularities
in the formation. To judge from recent review
articles,’” diffraction theory is still primarily a
branch of physical optics. Correspondingly, its oldest
and best-developed part deals with diffraction from

* Permanent address: Physics Department, The Ohio
State University, Columbus, Ohio.

1 H. Honl, A. W. Maue, and K. Westphahl in Encyclopedia
of Physics, edited by 8. Fliigge (Springer-Verlag, Berlin, 1961),
Vol. XXV/1, pp. 218-573.

2 C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954).

edges and apertures of screens. When diffraction from
a nonplanar interface between two media is con-
sidered one finds results for a special geometry, e.g.,
for a sphere, obtained by a direct solution of the
boundary-value problem with use of special func-
tions. Such methods are of little help for other, less
regular, interfaces. A notable exception is the work
of Miiller,* who applied to refractive interfaces the
techniques familiar for the theory of diffraction from
an aperture in a screen. These consist of the use
of a representation theorem (Green’s theorem) to
express the field at a point P inside a region U in
terms of certain functions (e.g., electric and magnetic
currents in the electromagnetic case) on the surface
S enclosing U, and the use of the boundary conditions

3 CL. Miiller, Grundlagen der mathematischen Theorie elec-

tromagnetischer Schwingungen (Springer-Verlag, Berlin, 1957);
Math. Ann. 123, 345 (1951).
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on S to obtain integral equations for these surface
functions.” An advantage of this method is that it
leads to convenient approximation methods such as
the Kirchhoff approximation, or to more powerful
ones such as the variational method of Levine and
Schwinger,® which can be extended—as will be indi-
cated below—to apply to the integral equations
obtained by Miiller.

The theory of diffraction of elastic waves, as de-
veloped along similar lines independent of the geom-
etry, is of rather recent origin.’”” In analogy with
optics, only “sereens” of different types have been
considered. A refractive boundary like that studied
by Miiller would be more appropriate for geophysical
applications, but it has never been used in this con-
nection. In the following this problem is treated in
terms of integral equations and subsequently trans-
formed into a variational principle analogous to that
of Levine and Schwinger.

2. REPRESENTATION THEOREM
The state of an elastic solid is given by a vector
field u; which is the displacement as a function of
position, z, and time, ¢. With it goes a stress field
t:; given by
t,‘,’ = C;,’_,qaqu,,. (1)
The elastic coefficients, which can be 2 dependent,
satisfy the relations

= Cpg,i;- (2)

d, signifies d/9z,. The tension, 7;, for a surface
element with normal n; is equal to

Ciiva = Ciipg = Cij,ap

o= Lin; = Ouu, (3)
where
Q. = Ciipife “)
The equations of motion are
9,y — plis = —1, )
or, using (1),
Fou, — plls = —f,, (6)
where
Fii = OxCix,ia0- ()

f: is the external (body) force density, and p is the
mass density.
The solutions of Eq. (6) for any f, can be obtained,

4 Reference 1, p. 353.

5 H. Levine and J. Schwinger, Phys. Rev. 74, 958 (1948).

¢ W. D. Kupradse, Randwertaufgaben der Schwingungs-
theorie und Integralgleichungen (Deutsche Verlag der Wissen-
schaft, Berlin, 1956), pp. 124-135.

7A. T. de Hoop, “Representation Theorems for the
Displacement in an Elastic Solid and their Application to
Elastodynamic Diffraction Theory,” thesis, Delft (Excelsior,
The Hague, 1958).
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by integration, from the Green’s function of the wave
equation. For the present, I consider only the Green’s
function for periodic time dependence, which is a
solution of Eq. (6) for a unit force density of fre-

" quenecy w acting at a point Py(z,), in the & direc-

tion, i.e.,
fo = dad(x — zo)e’ . 8)
It will be symbolized by G (zxo)e’™’, thus
(Fei + pw’8:))Gin(azo) = —8ud(x — Zo), 9)

and is defined by the additional requirement that

it satisfies the radiation condition,® according to

which the elastic coefficients and the density be-

come constant at large distance and
lim |z| Gi(zz,) = 0.
[EIEN]

Note that G depends on w, although this is not

indicated explicitly.

The representation theorem follows’ by consider-
ing, inside a region U, two displacement fields, u'"
and u*’, and the corresponding stress fields, and
by applying Gauss’ theorem to the vector field
uPtY —uPt?. With Eq. (2) this yields the identity

(10)

@, ) I8 @
fdx (Wi Foui’ — g Foui )
v

= [az@@n® — Pu®). A
z

4 denotes a point on the surface = bounding U;
7 is the tension on Z, with respect to the outward-
directed normal. By applying Eq. (11) to all space
and choosing u{’ = G, (zx,) and u{® = G,.(zz,),
the right-hand side vanishes on account of Eq. (10).
With use of Eq. (9) one therefore finds®

G, (o) = Gii(@ox1). (12)

Equation (12) is the “reciprocity theorem,”"’ which
will be used frequently in the following.

The representation theorem is obtained from Eq.
(11) by selecting for U a volume in which the elastic
coefficients ¢;;.,, are constant and by taking u{” =
G, (zz,) and u® = (%, (xx,), where G° is the Green’s
function for the case that the elastic coefficients
have the same constant value in all space. The point
P,(z,) is in U. This gives, using Eq. (12) for G°,

Gii(@xe) — eG?’i(xle) = fzdf' (Ggi(f?'xl)ka(f'-’l?o)

— Tr.(#2)G;(#'x0)), (13)
8 Reference 1, p. 247. .
* L. Knopoff and A. F. Gangi, Geophysics 24, 681 (1959).
10 Lord Rayleigh, The Theory of Sound (Dover Publica-
tions, Inc., New York, 1945), 1st Amer. ed., Vol. 1, Sec. 107,

p- 151.
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where ¢ = 1 when P,(z,) 1s in U, ¢ = 0 otherwise.
T is the tension on 2 associated with the displace-
ment field G:

Tk,'(f;,xo) = [@éme'(x’xg)]-,'=5'. (14)

The prime on © indicates that the differentiation
is with respect to the primed variables, and that
the normal »! at the point £’ of T is to be used.
T° is similarly related to G°. In Eq. (13) G° and T°
are considered to be known functions, although their
evaluation for all but isotropic elastic solids may
pose some difficulties. Thus, Eq. (13) reduces the
problem of finding G inside U to that of finding
the displacement-tension field @, T on Z; but at
the same time, by letting x; approach Z, it yields
important identities for this surface field.

Beéfore deriving these identities, it is useful to
introduce a new notation, which is aimed at giving
the integrand of Eq. (13) the form of a matrix
product. In the first term one has, from Eq. (12)

Ggi(j’xl) = G?k(xl:ﬁl)- (15)
In the second term, I write
Ti(&'z) = T?Z(xl-’ﬁ') = [0} Gi(@:2) s e, (16)

which serves as definition of 7°. The symbol 1 is
thus used to indicate simultaneous interchange of
indices and variables. This operation will be called
conjugation. According to Eq. (15), G° is invariant
under conjugation.

This brings the integrand in Eq. (13) into the
form

G 8) T (&' x0) — T, 8") G (8 30). an

This can be further simplified by introducing a two-
component ‘‘vector”

ar
ij(f'.’to) - [Gki(x xo)}
T,i(£'20)
and, as an extension of the meaning of the symbol {,
a‘‘conjugate vector”
Hi@#) = @h@d), Th(x4)). (19)
The expression (17) has the form of an alternating
product

(18)

A R
H?k(xlxl)aHki(x,xO) s

g

In (20) one can dispense with the indices 1, j, k,
by adopting the convention that products will be
matrix products with respect to these indices as well.
Thus, Eq. (13) becomes

Gxixo) — eGn(xle)

(20)
where

21
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_ f A H (@¢)eH(#2).  (22)
z

Extending the definition (19) to apply also to H,
and because of H°t' = H°, one obtains by conjuga-
tion of Eq. (22):

G'(zzs) — G (z20)

_ f A H (@ #)oeH @z (23)
z

According to the reciprocity relation, Eq. (12) and
(15), ie., Gf = @, G°" = @°, the expressions (22)
and (23) have the same value.

3. IDENTITIES FOR H

In Eq. (22) one can take for z, a variable point
and let it approach = : x — #£. In the limit one
obtains G(#z,) — €G°(£z,) with ¢ = 1 or 0 as above.
One can also apply the operator ©, with n; being
the normal to 2 at the point £, and then take the
limit £ — £. The result is T(fx,) — eT°(£x,). These
relations can be written in a compact form as follows:

H(ézo) — eH(4c)
~ lim = f a2 H @2 oH(# ),
z

z—f

(24)

where Z is a two-component operator defined by

&)
i T ®i1' ’

where © differentiates with respect to the unprimed
variable z in Eq. (24). In order to take the limit
in Eq. (24) one chooses an area S, of = containing
the point £, separates the integral into [5_s, + [s.,
and takes the limit  — £ and S, — 0 in that order.”*
1t is easily shown'? that one has, quite generally,

I

(25)

lim lim & | d#’H*(aé)oH(#'z,) = $H(dzs). (26)

8o—0 z—# So

In the remaining integral, the limit x — £ can be
taken by substitution after operating with =. This
gives

3H(fx,) — eH 0(-'2130)

= lim [: f d:a'H“(xae')qH(aa'xo)]
Z-Se

So—0

@7
For finite S,, one can apply E under the integral
sign, but the limit 8, — 0 of the resulting integral
does not exist. Nevertheless Eq. (27) will be ex-

pressed as a symbolic integration, f, which is de-
fined by

11 Reference 1, p. 234.

12 Equation (26) follows by applying Eq. (22) to a small
cylinder with base S,, axis along n; and height equaling twice
the distance from P to S, and by considering the limit that
the height is much smaller than the linear dimensions of S,,
while both approach zero.
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f a12F )],
z

= lim [= f A FE) e, (28)
S0 I-S
This gives
1H(2zo) — eH'(fz,) = fd:é’L(:é:ﬁ’)aH(ﬁ’xo), (29)
where )
L(£8) = [EH"'(@#))sz, (30)
or
0 ot
Lii#) = (G T } (31)
TO QO
with
Q(22) = [0: 0,60 @E ) lins.er-s- (32)

It is easily verified that Q°f = Q° and therefore
L'(¢¢") = L(#2). (33)
The conjugate of Eq. (29) ean similarly be obtained
from Eq. (23).
When P, is in U(e = 1), Eq. (29) can be com-
bined with Eq. (23) to eliminate H°. This gives

@ (@zo) — (2.0
= - f ds f d#'H ' (z8)oL(38)eH(# z).  (34)

The other term, arising from the first term in Eq.
(29), vanishes on account of the identity

f ¢ H'(n,8)oH(dz) = 0, (35)

which is found by taking in Eq. (11), v = G(zx,)
and ¥ = Q(zr,), and using Eq. (12). From the
conjugate of Eq. (29) (with z, replaced by z,) and
from Eq. (22) one finds similarly, for P, in U:

G(T1e) —~ G°(2,0)
- _ f dt F a8 B'@#)eL@ D)el(En). (36
= z

The right-hand sides of Eq. (34) and (36) differ
only in the manner in which the symbolic integration
is performed, but one sees from the reciprocity
theorem that the results are the same. On the other
hand, Eq. (34) follows from Eq. (36) by conjugation.
This shows that the invariance of L, expressed by
Eq. (33), embodies the reciprocity, and suggests that
the symbolic integration can be treated in a manner
which preserves this symmetry.

4. INTEGRAL EQUATIONS FOR H

The only special assumption made in deriving the
relations (29) is that the elastic coefficients are con-
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stants inside U. Considered as integral equations
for H, they have therefore a multitude of solutions.
In order to arrive at a unique solution, the model
must be fully specified. This I will do by stipulating
that space is filled with two homogeneous solids,
welded together on a surface S. § is supposed to
divide space into two parts, which will be called
region 1 and region 2. Region 1 contains the source,
i.e., the point P,. The elastic constants in this region
are indicated simply as ¢, those in region 2 as ¢°.
Other quantities, e.g., p, G°, L, are similarly dis-
tinguished for the two regions. The normal n; on
S points from region 1 into region 2. Across S, where
p and ¢ are discontinuous, one must impose the
boundary condition that the displacement and the
tension, i.e., G and T, are continuous.

The Green’s function in all of region 1 can be
expressed, with the above mentioned methods, in
terms of a surface function H on S. To this end
one takes for the surface T of the previous section
the interface S, closed at infinity (if necessary) to
surround region 1, and notes that the latter part
does not contribute on account of the radiation con-
dition Eq. (10). This gives an expression like Eq.
(22), with e = 1:

Gloz) — @@z = fs a4 H*\(ed)oH(@'z). (37)

For the present model, an expression just like this
but with ¢ = 0 and with H® replaced by H’* holds
for @ in region 2. Approaching now with the point
z, the surface S from the respective sides, Eq. (37)
and its ® derivative lead to an integral relation for
H of the type (29), while its counterpart in region 2
gives a similar relation for the surface function on
the other side of S. The continuity of ¢ and T
implies that

lim H(zz,) =

z—& in 1

One therefore has
LH(Ezy) — H'(6z0) = fdge' L) eH(# ),  (39)
S

lim H{zz,).

zf in 2

(38)

1H(day) = -f d# IF(e8)oH(#x).  (40)
8

The minus sign in Eq. (40) corresponds to the fact
that the normal n, is directed inward for region 2.
Obviously, neither Eq. (39) nor (40) alone suffices
to determine H. Together, however, they fully ac-
count for the wave equation in regions 1 and 2
and for the boundary conditions. The set (39) and
(40) must, therefore, have a unique solution. Mathe-
matically speaking, the ambiguity of the solution
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of either (39) or (40) can be traced to the singu-
larity, at the point & = £, of the kernel L, in
particular of the matrix element Q° of L which, as
seen from Eq. (32), contains second derivatives of
the singular function G°. This necessitates the use
of the limiting process defined by Eq. (28).

I will now show that a unique method exists to
eliminate these divergencies, while preserving the
general character and symmetry of the equations.
To this end I cancel the strong singularities of Q°
at any point of S by subtracting an appropriate
linear combination of matrix elements of Q°. This
defines a matrix B(x) such that the expression

Q%i(£2") — Bu(£)Qi3(£2") (41)
is free of strong singularities. I now take the cor-

responding linear combinations of Egs. (39) and (40)
and obtain

AY£)H(£zo) — H(dx,) = f dt’ K*(&£")eH(2'x,),

(42)
where
K*(#4') = L(£#") — B@&)L*(££") (43)
and
Ati(x) = 3[8:; + Bii(H)]. (44)

In Eq. (42), the integral is the principal value, i.e.,
di’.

S-8o

(45)

S 800

The integral equation (42) does not have the sym-
metry suggested by Eq. (39), because K" is not
invariant under conjugation:

K*'(4¢") = L(é#') — L*(4¢)B(#) = K*(¢¢'), (46)
and, moreover, the matrix A" is in general not
symmetric, A* = A* (_ indicates transposition).

Substitution of H° from Eq. (42) in Eq. (23) gives
G'(@.z)) — G (.20

. f it f d#" H'(0.8)oK*(£8')oH(&'z,)
8 8

+ fq df H'(2:8) A(&) o H(£2). 47)

One can similarly derive the conjugate equation

G(xlxo) - Go(xlxg)
- f df / d4' H'(2,8)c K" (48") o H(#' z0)
S S

+ fs % H'(x,8) A@)oH(2xs). 48)

On account of the reciprocity relations, Iqgs. (47)
and (48) must be the same. Consequently, one has

f a¢ [ s H'@wd)o(K (62) — K(#8)oH(#'z,)
S 8

1111

- f it H' @, 8)(A"@) — A*@)oH(Ezy).  (49)

It was argued earlier that reciprocity, ie., the
validity of Eq. (49), should be a consequence of
the integral equations for H. This would be the
case if Eq. (49) could be replaced by the stronger
relation:

fs dt" (K*(22)) — K*(8")oH (% 7o)

= (4*(#) — A" @)H (),  (50)
from which Eq. (49) follows by multiplication with
Ht(z,x)o (with z, arbitrary) and integration. Indeed
Eq. (50) is the necessary and sufficient condition
that Eq. (42) can be symmetrized, giving

A@)H(Ezy) — H G = f 4’ K(@2)oH@zs),
S

(51)
where
A (£) = §[268:; + By;(£) + B,i(#)] (52)
and
K(##') = L(##") — B@L (82) + L'E8)B(#)].
(53)

Expressions for G and G' similar to (47) and (48),
but derived from Eq. (51) are, obviously, identical.
I will assume in the following, on physical rather
than on mathematical grounds, that Eq. (50) is valid.

The derivation of the integral equation (51) was
the purpose of this section. It will not be attempted
here to prove that it has a unique solution. Its
structure is, however, analogous to the integral equa-
tions for the electromagnetic case,® apart from the
fact that there B is proportional to the unit matrix,
8o that symmetrization is not necessary. A unique-
ness proof for that case ean be found in Ref. 3.

5. THE VARIATIONAL PRINCIPLE

The integral equation (51) and its conjugate can
be obtained from the following variational principle:

8X[H(¢zo), H'(z.£)] = 0, (55)
where
X[|H,H = ( f H°’aH)( f H*aH")
x [ f f H'oKoH — f H*AUH]_I. (56)

H(ix,) and H'(z,£) are two functions of £ which
are varied independently; arguments are to be in-
serted in (56) as usual. This result is obtained as
follows. The coefficients of 6H's in Eq. (55) gives

AH — EH® = fKaH, (57)
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E= [ [[ #okorr — | H*AUH] / f H'oH".
(58)

E is a constant, i.e., depends only on the parameters
2o and z,. The solution of Eq. (57) is E times the
solution of Eq. (51). Equation (58) is also obtained
as a consequence of Eq. (57) by multiplying with Hfe
and integrating. Therefore E is an arbitrary normal-
ization constant. It will be clear that the existence
of a variational principle of the form (56) hinges
on the validity of the symmetrized integral equa-
tion (51).

The variational prineiple given by Eqgs. (55) and
(56) is a generalization of the variational principle
of Levine and Schwinger,® which applies to diffrac-
tion of scalar waves (e.g., sound waves in a liquid)
by an aperture in an infinite plane screen. The
importance of this variational principle lies in the
fact that the stationary value of X is precisely the
quantity in which one is normally interested. This
follows from the fact that X is homogeneous of
degree zero in H and Hf, making it independent
of normalization, and from the fact that Eq. (57)
with £ = 1 leads to Eq. (37) which gives, using
Eq. (58),

X oo [H, H' = Gzizg) — G(z,20). (59)

This makes Eq. (56) ideally suited for approximate
calculations of G(z,2,) — G°(z.2,), because it is the
quantity least sensitive to errors in H and H'.

6. ISOTROPIC SOLIDS

The elastic coefficients of an isotropic solid are
given in terms of the Lamé coefficients A and p by

Cispe = N0ijbp + p(8:58;0 + 8:08,1). (60)
The free Green'’s function G° is given by’
GlL(aa) = () BRI — )
— k35,R7%eTF], (6D)
where
R*=RR,, R,== —1z, (62)
kE = w'/ci = po’ /(N + 2u), (63)
E: = o'/c] = pw’/p. (64)
The singular part of G° is
%~ @rRY (v, 8, + v-R.R), (65)
where
ve = 3t £ 0+ 2077 (66)

From this one finds, using Eq. (32), the following
expression for the singular part of Q°:

Q@8 ~ —w*(4nR) 26— — v.) 8, R

+ (. — 3”*)(3RiRi + 2R2nini)]' (67)
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On a frame of reference with z axis parallel to the
normal in the point £, the unwanted singularities
reside in the diagonal elements of Q°, and are given by
QF = w(@=B)7L + VO + 20)], (68)
QL = p(aR) 7L + M\ + 2w]. (69)
Consequently the matrix B(zx) of Eq. (41) is equal to
B.(#) = Yida + (vo — vdnm, (70)
o= Q/Q¢, v = Ql/Q. ("1)
vy and v, are constants; the #-dependence of B
comes from its dependence on the normal n, in the
point £.

The equations for an isotropic solid can be con-
siderably simplified by using an isotropic source
function, i.e., radially directed forces distributed
uniformly over a small sphere with center P,. Av-
eraging Eq. (22) over this force distribution is equiv-
alent to taking the divergence:

G-i(xlxo) = a?GH(xle)a (72)
with similar relations for G°(z,xz,) and H(#'z,). From
Eq. (61) one finds for the average free Green's
function
Gzx’) = 1% x’) = (N + 2w)7'9.(e”*""/R). (73)
The resulting equations are not invariant under
conjugation. This invariance is restored if one also
takes the divergence with respect to the first index,
in the point P,. This amounts to calculating only
the spherically symmetric or p-part of the wave
arriving in P,, just as the averaging (72) generates
only a p-wave. With this the free Green’s function
becomes a scalar quantity, i.e.,

G (2120) = —p*(\ + 2u) 7% /R
and Eq. (22) becomes

Gz — Clamy) = f a8 1 (@Yol (&'30). (75)

(74)

H, follows from the average of Eq. (51) (with respect
to the second index only). The kernel K remains
therefore unchanged, but H?;(fz,) is replaced by
Hi(¢z,). In Eq. (56), finally, the denominator is
unchanged except that the unknown tensor H is
now a vector quantity, while the numerator is
drastically simplified because H° and H°t contains
only p-waves. I want to emphasize that the equa-
tions thus obtained are not approximations, but
give the exact relation between a p-wave emitted
at P, and the p-part of the refracted wave arriving
at P,.

7. LIQUIDS

Although a displacement field in a liquid is most
conveniently described in terms of a scalar potential,
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the present formalism can also be directly applied.
G° is obtained from Eq. (61) by taking the limit
u — 0, assuming that a small imaginary part causes
the exponential in k, to vanish. This gives

Giix’) = —(pw')'0.:800(x — 7', (76)
where ' ,
oz — 7)) = (4xR) e HF @7
with
K = pw’/A. (78)

¢ is the Green’s function of the Laplace wave
equation, ‘
300 + 7‘32&0 = (79)

It is convenient in this case to use a slightly different
definition of H given by
P‘*’zGiiJ
T

Hii=[

With (76) and (80), L of Eq. (30) takes the form

—a.0} onm!
L?i = }@-
n;0; nm}

It follows that 7' has the direction of the normal,
T:; = nmnT:;, and that Eq. (89) gives rise to equa-
tions relating only the tension and the normal compo-
nent of G. Indicating the normal component of H
by the corresponding lower-case letter,

—b&(x — 2').

(80)

(81)

ni(fxo) = n.H,;(£xo), (82)
Eq. (39) becomes
%n;(:ﬂzo) - ﬂ‘fm(fxo)
= f oz L)o@, ®3)
where L° is a scalar quantity given by
L0 = nLim; = {“’""’" ""}‘p. (84)
(4 1

Here 3, is the normal derivative, 9, = n.9;. The
boundary conditions have to be modified, requiring
continuity of the tension and of the normal compo-
nent of the displacement only. Equation (83) can
then be combined with an equation similarly ob-
tained from Eq. (40). One sees that the case of
liquids is anomalous in that the strong singularities
reside in the first element of L’ i.e., in 7,G%n;. The
matrix B defining the linear combination is propor-
tional to the unit matrix, and one obtains

31 + V)ni(fxe) — "I?o(fxo)

f d¢’ K4t )on,(#'z),  (85)
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- ’ e
KO = LO - [ anan 7an]‘pa’ (86)
vah, ¥
where
gaa — e-—ik“R/R' (87)
= p*/p. (88)

One can finally take the average for an isotropic
source, replacing %; by 7, in the same manner as
for an isotropie solid. One finds

(dzg) = if[ 9. }o,
—1

and, averaging the equation corresponding to Eq.
(22) (with e = 1) and remembering the definition
(80) one has

p(Clazs) — G(2,20)
= [ a# @i,

(89)

(90)
with
p’G” = —k'p. 91

Equations (86) and (89) are to be used in the
variational equation. :

8. PULSED WAVES

The above presentation of diffraction was based
on harmonie analysis of the source function f;. It is
sometimes convenient to use a Laplace analysis’

1= [ st ©2)
or to use a presentation in terms of pulsed waves.
The latter case will be discussed in this section.

A time-dependent Green’s function is here defined
as a solution of Eq. (6) with the source function'®

fixh) = 8,;8(x — x)6(t — ¢,). (93)

This gives G ;{xtzt,). A time-dependent free Green’s
function, G°;;(ztxoty), is similarly defined with re-
spect to a wave equation with constant coefficients.

The quantity of physical interest is the causal
Green’s function, defined by the additional require-
ment

Gztzoly) = (t < t). (94)

An anticausal Green’s function will be distinguished
by a *, and satisfies

G* (wtxoly) = (t 2 to). (95)

From the time independence of the coefficients of

12 M. Born and E. Wolf, Prmczples of Optics (Perga.mon
Press, Ltd., London, 1959), p. 377
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the wave equation, it follows that G is a funection where

of t — t,. Therefore
G*(xtxoto) = G(it, -~y Zo, —to)~ (96)
The reciprocity theorem for causal Green’s functions
is obtained from Eq. {11) by choosing
ugl) = Ggq($t$oto),
uf-'“ = Gi*r(xtxltl)!
with ¢, > ¢, and integrating from &, — « to §; + «,
x > 0. Upon substitution from Eq. (6) the term
involving ¢ vanishes on account of Egs. (94) and

(95). Extending the integration over all space one
obtains

Gii(@itiote) = Giilzo, —to, 1, —1t1).

97

(98)

The generalization of the representation theorem,
Eq. (22), to time-dependent Green’s functions follows
similarly by taking

uﬁ” = G;Q(thoto) y

u,('z) = Gﬁt(xtxl tl) .

(99)

This gives
G(x; t;woto) it eGo(x‘ tlxotq)

- f T f A H @t 8o H@# Paots),  (100)
to—i b

where the -conjugation T is now defined by
H'(ztdt) = HE, — ¢, 20, — 8),  (101)

. meaning transposition of the binary and ternary
indices. Because of the fact that all quantities depend
only on the time difference, this is the same as
interchanging variables and indices and not inter-
changing times. The time integration in Eq. (100}
can, of course, be just as well extended from — o
to 4 «, because the second factor is zero for ¢ < {,
and the first factor is zero for ¢ > t,.

From here on, the development of the foregoing
sections can be repeated, the difference being that
&® and its derivatives, e.g., L, become known fune-
tions of time, and that everywhere the integration
over § is accompanied by integration over a time
from — o to + =, One still has LT = L representing
the reciprocity. The matrix B(£) is time independent.
In the variational theorem H and H' must now be
varied as funetions of z and .

For isotropic solids one finds, from Ref. 7,

Gt ) = (4wp) ' {3:81R™
X [D(¢ — ¢ — Rfe,) — D(t — V' — E/c,)]

+ %R — ¥ — R/}, (102)

Dy =0 (z <0,
D) =z (z > 0).
Because (° and therefore also H® and K contain
only é-functions of time and their derivatives, the
time integration in both factors in the numerator
of X, Eq. (56), and one time integration in the
double integral of the denominator, can be carried
out. This requires a partial integration and is similar
to the optical case discussed in Ref. 13.
A generalization of the Green’s function to pulsed
waves of arbitrary time dependence is considered
in Ref. 7. Taking the source function

(103)

fulzt) = 8;;8(z — zo)g(t — &), (104)
one can define a Green’s function G° by
Gulatante) = [ dt’ Golatraiole — ). (105

For the free Green’s function one obtains, for an
isotropie solid,” using Eq. (102):

Gii(xtz't)) = (4mp)”" (0,0/R™
X [D(t — t' — Rfo,) — D°(t — ¥ — R/c,)]
+ c:‘zaz’iR-lg(t - t, - R/C,)},

D@ = [ dt oo — ok

With the one-sided averaging in the definition (105)
one loses the symmetry of the equations, and thereby
the variational theorem. Symmetry can be restored
by also averaging the signal arriving in P,, with the
same shape funetion g(¢ — ¢,). This gives

xi, 1 = ([ meven)([ Benr)
X [ [ f H'oKoH — f H*AJH]-I, (108)

where all integrations include time integration. Note
that the kernel is unchanged. The solution, H' and
H, obtained from X = 0 will be the time average,

(106)
(107)

o=na (109)
and the stationary value of X is
Xsuae, = G° — G*. (110)
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Potential of the form (gr—In2r — gir~#)8(r — r¢) is considered in connection with the applicability
of peratization technique. The advantage of this potential is the fact that while it is dominated by a
logarithmic part near the origin, the exact solution of the zero-energy and s-wave Schrodinger equa-~
tion is obtained in a closed form. We show that the peratization technique gives the correct answers.

1. INTRODUCTION

N a previous paper' we have considered a singular

logarithmic potential of the form gr™* In® r. In
that paper, we have shown that the summation
of the leading singular terms in each order of the
perturbation series, where we introduced a cutoff
parameter, gives a nonsensical answer. Recently,
Wu,? dealing with a similar problem, pointed out
that if all the singular terms are summed up, the
final answer can be made meaningful when the cut-
off A — o. Unfortunately, since the zero-energy
and s-wave Schrodinger equation for both the po-
tential considered by Wu (—g¢gr™ In r) and that
considered by the present authors (gr~* In” r) cannot
be solved exactly, it is difficult to draw any definite
conclusion with regard to the applicability of the
technique of peratization.

The technique of peratization has recently been
discussed and applied®** to scattering problems with
repulsive potential of the form gr™ for ¢ > 0 and
n > 3, that is a potential which has a singularity
of the pole type at the origin. (More generally we
have a branch-point type of singularity when n
integer.) It has also been shown by the present
authors that peratization technique also gives the
correct answer for a potential which has an essential
type of singularity at the origin, i.e., potential of
the form gr *(¢*”) + 1r~*. In this paper we shall
discuss the applicability of peratization technique
for a potential which has a branch-point singularity
of the logarithmic type at the origin. For this
purpose we consider a potential of the form

* Work supported by the U. 8. Atomic Energy Commis-
sion and the U. 8. Air Force,

1 Present address: Max Planck Institute fir Physik und
Astrophysik, Munich, West Germany.

I Present address: The Instituto de Fisica Teorica, Sao
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1 H. H. Aly, Riazuddin, and A. H. Zimerman, Phys. Rev.
136, B1174 (1964).

¢ T. T. Wu, Phys. Rev. 136, B1176 (1964).

3 N. N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964).

4 G, Tiktojoulos and 8. B. Treiman, Phys. Rev. 134,
B844 (1964).

. In®
V() = (g 7‘47'

1
- g% ;§> B(r — 1o), 0
where
0r — 1) =1 for r <,
=0 for r>r,.

Our selection of a potential of the form given in
Eq. (1) is motivated by the following consideration:
It is the logarithmic term which dominates at the
origin, since the g}~ term is less singular, and this
is what we want. The addition of the g*™* term
helps in the sense that the Schrédinger equation
for the potential (1) can now be solved exactly in
a closed form for zero energy and zero angular
momentum. On the other hand, the ¢g*~* term does
not fall sufficiently fast at « so as to define phase
shift at zero energy. To avoid this difficulty, we
have introduced the 6 function. This is no handicap
because it is the behavior of the potential near the
origin that we are interested in studying in connec-
tion with the peratization technique. Since we know
the exact solution of the Schrédinger equation for
the potential (1) for zero energy and s wave as
discussed below, we show by comparing it with the
one obtained by the peratization technique, that the
peratization technique does in faect work for the
potential (1) also.

2. EXACT SOLUTION

Let us consider the radial s-wave Schrodinger equa-
tion for zero energy for the potential (1):

&y (
ar’
with the boundary conditions
Y@ — 0 and ) — r.
r—0 o

In® »

L) gy =0, @

The exact solution of (2) is:
¥(r) = r exp {g}[(Inr + 1)/r]}
=ar+ 8

for r <y
for r>ry (3)
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which is regular at the origin, The continuity condi-
tions for ¢(r) and dy/dr at r = r, gives

o m oo 2o 1 - 2]

B8 = exp {g*[(Inr, + 1)/ro]}g* Inro. @
From (3) and (4) it follows that the zero-energy
scattering amplitude is given by
a=glinr(l — gt lnry/ry) ™.
3. SOLUTION OBTAINED BY PERATIZATION

Let us now apply the peratization procedure to
Eq. (2) in order to get a (the zero-energy scattering
amplitude). For this purpose we shall follow the
method which Khuri and Pais® used in connection
with the inverse-power potential. Introducing

¥(r) = A/r(r), (6)
and regulating the potential by introducing a param-
eter a, the regulated wavefunction ¥(r, ) is written
a8

Y(r, @) = ¥,(r, @) + ¥,(r, ), 9

where ¥, satisfies a singular integral equation for
« — 0 while ¥, satisfies a regular integral equation
for a — 0. These integral equations are

¥, 0) = *% j: ¥ dy V(y, )
X Wiy, @) + ¥ly,0)],
woe) =1=1 [ Yy — YV, D00,

®)

®

a6 - wve onee. O

For a # 0 there exists always a solution of Eq. (8)
and is given by

Tl(ri a) == a(a)/r, (10)
where
ale) = — fo y dy V(y, o)
X [\I{l(yv a) + \I;z(y! a)]r (1 1)

which is the zero-energy scattering amplitude.

Substituting (10) in (9), we obtain a Volterra type
of equation for ¥,, the solution of which we write
in the form

ALY, RIAZUDDIN,

AND ZIMERMAN

Assuming that the limit of a (@) as o — 0 exists,
Eq. (9) being of the Volterra type is nonsingular
when a — 0. Putting ¥ (r) = F(r) — 1/r, ¥V (r)
and F(r) satisfy the integral equations

¥ =1-1 [ yaye - 9VeePe, 2

FO=2-1["yaye-pvere. 03

From (12) it follows that

v = 4 exp {g"[}n r,,.+ 1]}
+Bexp {:Dg [k” + 1]}L(r), for <1

Po=1, for r > 1, (14)

where

r 4
L{r) = j; ;%5 exp {—29*[131‘?1-—1]} dr'?

¢ being an arbitrary point. The continuity condi-
tion for WiV (r) and d¥{’ (r)/dr at r = 7, gives

A = exp {—g*[(ln 1o -+ 1)/r6]} — BL(ro),
B = gt Inr, exp {g[(In 7o + 1)/ro]}.
From Eq. (13) it follows that:

Fir) = A’ exp {g*[kﬂ:}i—%]}
-+ B’ exp {g*[lﬁi;t-—l—]}b(r) for r <y

= 1/r for > 1. (16)

The continuity condition for F(r) and dF(r)/dr at
T = 1o gives

A =Lexp {~g;[229,+_1]} — B'L(ry),

Ty To

B’ = exp {g*[ln T(;O—{— 1]}(;}} h;:“ -— 1)- an

Using the expression

¢ = lim — 2y dy V(y, )¥:"(y, o)
0 14 7y dy V(y, )" @y, @) + 1/y)

(15)

Wy(r, o) = ¥V, @) + al@¥:7(r, a). we get
- Ty dy V(y)(A exp {g*[l—n—y—i—l]} + B exp {g”[ln—%t—l]}lz(y))
a = lim s y -,

0

L+ [T ay v(ar en {0 BLEL b 4 e {0 2 b))

(18)



SCATTERING BY SINGULAR

Taking the leading singularities both in the num-
erator and the denominator we get

—-B/B’,

which because of (15) and (17) reproduces the exact
result (5).

In conclusion we can say that the peratization
technique can be applied to a special type of singular
potential of logarithmic type. As it was shown to

a =

LOGARITHMIC POTENTIAL 1117
apply also for other special cases like potentials
having poles®** or essential singularity® at the origin,
we may conjecture that the peratization technique
can be applied to all singular potentials independ-
ently of the nature of the singularity at the origin,
provided the potential must be sufficiently singular
at the origin and have some good behavior at infinity.

s H. H. Aly, Riazuddin, and A. H. Zimerman, Nuovo
Cimento 35, 324 (1965).
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Several relationships for Feynman’s functional integrals are derived. From these relationships, we
construct two different schemes for approximating Feynman’s functional integral. The methods of
approximation are expected to converge sufficiently rapidly in many cases so that only the lowest
orders of the approximation are required to give reliable answers.

I. INTRODUCTION

N his Princeton dissertation of 1942, Feynman

introduced a new formulation of nonrelativistic
quantum theory.! This formulation is different from
that of Schrodinger or Heisenberg. However, because
of the great difficulty in evaluating the functional
integrals, there are only a few applications of the
Feynman formalism.

It is the purpose of this paper to derive some
relationships among the functional integrals. From
these relations we will construct two approximation
schemes. The approximation schemes are not based
on an expansion about a coupling constant and,
therefore, are expected to be useful in strong inter-
actions. These approximation schemes are expected
to converge very rapidly since we have kept the
predominant contributions to the functional in-
tegrals. The solution becomes exact as the order
of the approximation goes to infinity.

We have constructed one of the approximations
to give correct answers for harmonic potentials
e, V(X) = a + Az+ 3m2s% in all orders of
the approximation scheme. In a future paper, this
method will be applied to the solution of the fune-
tional integrals that arise for the matrix elements

! R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

in field theoretic calculations and will be shown to
yield the exact answer in all orders of the approx-
imation for noninteracting fields. Also, since we are
keeping the predominant contribution to the func-
tional integrals, it is expected that these integrals
will converge very rapidly and hence give reliable
answers for the first few terms of the approximation
for interacting fields.

There is an integral which is closely related to
the Feynman integral; it is called the Wiener in-
tegral.” In fact the Feynman integral is in many
cases defined in terms of the Wiener integral.’ There
have appeared in the literature various approxima-
tions of the Wiener integral and hence the Feynman
integral.

The first such results were given by Cameron.*
He has constructed two possible numerical integra-
tion rules which are based on approximating the
functional of interest by a finite series of trigono-
metric functions and replacing the infinite-dimen-
sional integral by a finite-dimensional one. One of
Cameron’s methods which he calls his rectangular
rule consists of constructing a sequence {I,} where

2 See for example I. M. Koval’chik, Russian Math. Sur-
veys 18, No. 1, 97 (1963) or G. E. Shilov, Russian Math.
Surveys 18, No. 2, 97 (1963).

3 R. H. Cameron, J. Math. and Phys. 39, 126 (1960).
* R. H. Cameron, Duke Math. J. 18, 111 (1951),
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I, is an n-dimensional integral. For reasonably well-
behaved functions, lim, .. I, will be equal to the
Wiener integral. Unfortunately the limit is not
approached very rapidly, which makes his rectang-
ular rule rather impractical.

By making a slight modification in his rectangular
rule he constructs his other approximation sequence
{Jn} which he calls his “Simpson rule.” This se-
quence converges much more rapidly. In fact, for
third-degree polynomial functionals, Jn is exact for
all n. Therefore, the first few terms of the Simpson
rule should give very reliable results if the functional
can be approximated sufficiently well by a third-
degree polynomial.

Vladimirov has also constructed an alternate ap-
proximation scheme which corresponds to replacing
the Wiener integral by a sum.® The parameters in
the sum are chosen in such a way to give exact
equality for polynomial functionals of degree three,
for odd functionals, and also for functionals of the
form

@) = [ o ds [ [ X)X ot 5,

where ¢(S,, S.) is an arbitrary function of bounded
variation. Vladimirov’s formula is more accurate
than Cameron’s Simpson rule. However, both
Cameron’s and Vladimirov’s methods applied to
most problems of physics should be very poor be-
cause the functional of interest is of the exponential
type and consequently is poorly approximated by
a polynomial function of degree 3.

Gel’fand and Chentsov® have approximated the
Wiener integral by a finite-dimensional Stieltzes
integral of sufficiently high multiplicity, and eval-
uated it by a Monte-Carlo method.

Rosen’ has approximated the Feynman integral
by taking a subset of the paths and consequently
gets the Green’s function which is correct to lowest
orders of the time.

The motivation of this work is based on Cameron’s
paper.* In this paper he derived a relationship for
Wiener integrals called the mixed integration form-
ula, which expressed them as multiple integrals,
where one of the integrals is again a Wiener integral.
In this paper we derive an analogous mixed integra-
tion formula for Feynman integrals and using the

( 8 V. 8. Vladimirov, Uspekhi Mat. Nauk 15, No. 4 (94), 129
1960).
¢ I. M. Gel’fand and N. N. Chentsov, Zh. Eksper. Teoret.
Fiz. 31, 1106 (1956) [English transl.: Soviet Phys.—JETP 4,
945 (1957)].
7 G. Rosen, J. Math. Phys. 4, 1327 (1963).
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stationary-phase method® construct an approxima-
tion for Feynman integrals.

The arrangement of the paper is as follows: In
Sec. II, a brief review of Feynman’s formalism of
quantization is presented. The definition of Feyn-
man’s funetional integral and its relation to the
Green’s function of the Schrédinger equation is
given. In Seec. III, we discuss an alternate method
of the formulation of Feynman funectional integral.
Instead of partitioning the particle trajectory into
polygonal paths and integrating over the endpoints
as was done by Feynman,' we expand the particle
trajectory into a complete orthonormal set and then
integrate over all the coefficients of the orthonormal
expansion. By varying the coefficients we obtain the
set of all possible paths. With the aid of this latter
formulation of Feynman integrals in terms of an
orthonormal expansion we easily get Cameron’s
mixed integration formula.* The free-particle ap-
proximation is the derived in See. IV with the aid
of Cameron’s mixed integration formula and the
method of stationary phases. The free-particle ap-
proximation is constructed to give the correct answer
for potentials of the form V(z) = ¢ + bX. Since
the major contribution to the functional integrals
comes from the classical path it is expected that
the first few terms of the free-particle approximation
to give reliable answers for other potentials. To show
that this is indeed the case we will solve an example
with a potential of the form V(z) = imw’z’. In
Sec. V, we improve the free-particle approximation
so as to give better results. We call this improved
procedure the ‘“harmonic-oscillator approximation.”
The harmonic-oscillator approximation gives the
exact results in all orders of the approximation for
potentials of the form V(z) = a + bz + cz’. For
other potentials it is expected to give reliable results
for the first few terms of the approximation. The
reason for this is the same as given for the free-
particle approximation. Section VI is a summary and
discussion of the results.

II. THE FEYNMAN FUNCTIONAL INTEGRAL

In the Feynman approach to nonrelativistic quan-
tum mechanics, the basic idea of a wavefunction
is maintained. Instead of solving the Schrédinger
equation to obtain the wavefunction of the system,
a new postulate is introduced. In this formulation,
the Green’s function K(z, ¢; z,, f,) connecting the
wavefunction ¢ (z, t) at time ¢, with the wavefunction
¥(zo, to) at an earlier time {, is given by an average

8 R. Abé, Busseiron Kenyo, No. 79, 101 (1954).
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over all real continuous paths connecting the space—
time points (z, ) and (z,, {,) multiplied by a normal-
ization factor in order to insure unitarity of the
wavefunction. All eontinuous paths are assumed to
be equally probable in magnitude, but the contribu-
tions to K(z, t; z.f,) differ in phase by an amount
proportional to the action. Therefore, if we know
the initial wavefunction y(z,, 0), the wavefunction
at a latter time, ¢, is postulated to be

Vo) = [ K@ uo 0w, 0, )

where the Green’s function kernel is given sym-
bolically by

K(z, t; z,, 0)

= ]%7-./‘ exp {% /: Lli(r), z()] dT}5[x(T)]v @)
with

Lli(r), 2(n)] = $mli(m)] — Viz(n)]

The variable z(r) is the continuous path that goes
from 2(0) = z, to z(tf) = z in a time, {. This path
is arbitrary and not restricted by the equations of
motion. 1/N is a normalizing factor introduced to
insure unitarity of the wavefunction. As a conse-
quence of unitarity, K(z, ¢; xzql,) must satisfy the
integral equation

K(z, t; 20, )
= f K@, t; xo, t)K(z, t; 2, ') do’. 3)

This condition will determine the normalization con-
stant 1/N. The integration [ 68[z(r)] is meant to
imply that the integration is taken over all real
continuous functions z(r) for 0 < = < ¢ satisfying
the boundary econditions z(0) = z, and z({) = =z.
The meaning of the symbolic notation is as follows:
Partition the interval [0, ¢] into n points r, = O,
Tiy, Toy -, 7o = tand let

fo LiE(n), 2(0)] dr

_ vl @ =)
a Z=; {2 " = )

V(x,)}(f, -1, (4)

Then substitute Eq. (4) into Eq. (2) and integrate
over each X, from — » to + « except for the end
points X and X, which are kept fixed. Then we
take the limit ags n — . If we use Eq. (3) to solve
for the normalization constant, then Eq. (2) can
be written as

1119
K(z, t; z{0)
. n/2
= lim (%) [ri(rs = 7 ( ) (ra = 1)
+w +o z ” l (xr — xf_])?
[T [Teoi BTk
- V(X,)](T, - T.,_l)} dxl de e d.'l:"...l. (5)

We note immediately that Eq. (5) is not well de-
fined. The integrals are over rapidly oscillating func-
tions and will not, in general, converge. In order
to assign the integrals a definite meaning, one must
resort to certain devices, such as letting % have a
small negative imaginary part to insure convergence,
which is allowed to go to zero after the integration
is performed.

For our purpose, Eq. (2) can be expressed in a
more convenient form if we make the change of
variables

x(r) = @ + (& — x)7/t + y(7), (6)

where £(0) = z, and z{{) = z. The function y(r)

has the boundary conditions

y(©0) = y@®) = 0.
With this change of variables, Eq. (2) becomes
Kz, t; x4, 0)

- e [ ¢ [ L
et @m0 )o@

where the functional integral is taken over all con-
tinuous paths y(7) in the interval (0, ¢) such that

y(0) = y(®) = 0.

III. ALTERNATE FORMULATION OF THE
FUNCTIONAL INTEGRAL

The evaluation of Eq. (5) is usually very difficult.
Dayvison,’ Burton and deBorde,'® and Davies'' have
considered a different approach. They carried out
the calculations of these integrals by representing
the set of all continuous paths going from =z, to z
in a time ¢ in terms of a complete set of orthogonal
functions. They calculated the action integral in
terms of the orthogonal expansion and then in-
tegrated over the coefficients of the expansion, there-
by taking into account the contribution of all
continuous paths.

* B. Davison, Proc. Roy. Soc. (London) A225, 252 (1954).

10 W. K. Burton and A, H. de Borde, Nuovo Cimento 2,
197 (1955).

U H. Davies, Proc. Cambridge Phil. Soc. 53, 199 (1957).
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Let {¢ .(2)}b e a complete set of orthonormal func-~
tions in the interval 0 < z < 1 such that ¢,(2) = 1.
Then, y(¢') can be expanded in terms of ¢,(t’'/t)

- (2) Eanlt)

n=0

®

Although this method is valid for an arbitrary com-
plete set {#,(z)} of orthonormal functions such that
#o(2) = 1, we will consider the case where

#.(2) = V2 cos (nwz) for n # 0,

$o(2) = 1, ©)
The expansion of y(r) is then obtained by integrating
Eq. (8) subject to the boundary condition that
y0) =y@®) =0

0= (8 ()

mw n=1 N

(10)

By varying the coeflicients a,, we can obtain the
set of all possible paths.

In analogy to the paper by Davison, Eq. (7) can
be expressed in terms of the orthonormal set given
in Eq. (9) as

. _ 2 }
K(x, t; 2, 0) = exp (zm(x%t %) )(2$ht)

+ 4o
xtim [T [
s )= -

IV(y) = lim L[V(y.)]

n—o

(11)

+® +a n
=1imf f i'*"exp{inaf-—

i=1

and

m )
Ko(z, t; 0, 0) = M) exp

It can easily be shown that K,(z, ¢; z,, 0) is just
the free-particle Green’s function. Equation (13) is
not well defined since the integrals do not in general
converge. To make it well defined, we will let g,
in Eq. (13) have a small positive imaginary part
in the exponent to insure convergence, and then
after we are finished integrating, let it go to zero.
We have now reduced the calculation of the
Green’s function to solving for I[V(y)]. For all but
the simplest kind of potentials, this is still very
difficult to do. We could approximate I[V(y)] by
the nth term of its sequence I,[V (y.)]. The result
is in general very poor since the convergence of

im(z — xo)z] .
2kt
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X exp {% fO‘ L{gu(7), ya(7)] dr} da, da - - - da,, (11)

where
} n
Yau(r) = (%) :Z:T a, cos (hr—t-T) (11a)
and
_ (4 e (l_rz)
yau(7) = (mr) ; 7 sin (11b)

The exponent in Eq. (11) expressed in terms of the
expansion is

i [ Lo, vl s

I

D[ g = Vet @~ e/t + vl dr

inai—%

n=1

o 5

mw/ i n

V[x + (x - x(,)tI
0

sin ’ﬂrt—’] dr. (12)

Using Eqgs. (11) and (12), K(z, ¢; z,, 0) can be
expressed as

K(x: t: Zo, 0) = Ko(x; t’ Zo, O)I[V(y)]7

where

(13)

% .[ V[x + (-’17 —_ xo) £ -+ y,.(-r):l dT} da1 da2 N da"
0 T

the sequence is very slow. However, by modifying
L[V (y,)] we can obtain a sequence that approaches
its limit faster than before. In fact, it will give the
exact answer for all n when the potential is of the
form V(z) = @ + Az + imw’z® where a, \, imo’
are constants. However, before we can do this, we
must derive the mixed integration formula

1 + @ + 0o . 1 4 2
I[V(y)] = ('I:)W2 e f_m exp [17!’ ; g-n]
XI{V[?/"‘%‘*’ ‘bv(g')]} dg‘l "'dg‘vv (14)
where
2 T
v = (h) £ () s

and » is an arbitrary positive integer.
To prove Eq. (14), we let » be a given positive
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integer and rewrite I,[V(y,)] in Eq. (13) when n > » in the form

LIV = f_:ﬂ f: dg, - dp, i exp (1-,r ; r?) f_: f_*” P

X exp{ir > af—%

l=v+1

©

‘ V[x + (z — zo) é + 4 + y. — y,] dr} da,., --- da,. (15)

We have just changed the name of the first » terms of a; to §; which does not affect the results. Since

and

is independent of a,, a,, - -

v = o [ [ an e (i Sa) [T

Ea?)dal

=1

+ow +
f "'f-i*"exp(i,

Viz + (& — z)v/t + %(:) + 4 =

da, =1

y] = V{x + (= — z0) T (@)i

¢ mr

X [iﬁsin ("—lf) + Y %sin (&’—7)]}
il t S ¢

+eo
[

, @,, Eq. (15) can be written as

X €xp {11!’ ”Z a‘f - Z/hf V[x + (x - IO)T/t + ‘pv(g-) + Yn — yv] dT} dal e dan

= (=9 _/':'

By taking the limit of Eq. (16) as n — <« and
interchanging the order of integration with it, we

obtain
v = (o7 [ [ e (i 32 12)
X VI + % = o]} d& - dee ()

When I[V(y)] exists, there is no difficulty in inter-
changing the limit and order of integration.

The mixed integration formula (14) can be used as
a starting point for various approximations to I[V (y)]
or K(z, {; 2, 0). In Secs. IV and V, we will construct
two such approximation methods starting from
Eq. (14).

IV. FREE-PARTICLE APPROXIMATION

In this section, we use the mixed integration
formula and the stationary-phase approximation to
find a new sequence I’[V(y)] which in the limit as
v — o will equal I[V(y)]. The convergence of this
new sequence will in many cases be very rapid, so
that we may get very reliable results in approxima-
tion I[V(y)] by the first few terms of the sequence
I'[V(y)]. In fact,

LIVl = I[V(y)] a7
for all positive integers » if the potential is of the form

[ exo (ir > VLAVl + 9.0 — w1} dts - ds..

(16)

Vz) = a + Az,

where a and X are constants.

In constructing the sequence I/[V(y)], we must
make use of the stationary phase approximation
developed by Abe.® So before proceeding further,
we will outline the main steps in using the stationary
phase approximation on I[V (y)].

Looking at Eq. (11), we notice that since 7 is
small, the exponential function e*/*, where S is the
action, oscillates extremely rapidly even for small
changes in S. Therefore, the contributions of the
neighboring trajectories will, in general, mutually
cancel, making only a small contribution to the value
of the integral. The largest contribution to the
integral will come from that trajectory which causes
S to change the most slowly, i.e., 8 = 0. But this
last condition determines precisely the classical tra-
jectory. Expanding the action S[z(f)] about the
classical trajectory z°(t), we have

Sle@®)] = Slz>®] + $°S* @O + --- . (19)

Keeping only the first two terms of this expansion,
we obtain the result

(18)

i

v~ (5) e (& [ timigreo

— Vize + (x — zo)r/t + y*(OI} d‘r) ) (20)
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where
m &y (r)/dr* = —aV(y") /9y,
y(0) = y'(t) =0 (21

and D is determined by the differential equation

md’D/df’ = —Da*V/ay™
with the boundary conditions
D) =0, dD/dl}eo=1. 22)

It has been shown that the stationary phase
approximation will give the exact results for I{V(y)]
in Eq. (20) if the potential is either constant, linear,
or quadratic functions of 3.**

In this section, we seek to find a method of ob-
taining the correct solution to Egq. (13) for all
potentials of the form V{z) = a + Az. We see that
this is possible if we approximate I{V[y—y,-+¢.(E)]}
in the right-hand side of Eq. (14) by

ItVly = v + (01

=~ exp (i/R)SAVIY® — v, + ¥.(O},  (23)
where
SAy* — o0 + (0}
= hr _i b,"——f‘ V[ac+(ac——a:0)tI
+ () + (‘m;) f:l b sin ’ﬂ’ti] dr (24

and the b, is determined from the set of equations

O=27z1rb,-—~(-9%f V(x+(x-x0)—;-
(455) E—“ .

nwrr ey
7 ) dr. (20)
These b; are just those coefficients of the expansion

X(r)=X+(x~xo)zT

4\ - b, . nIrT
+( )Znsm t !

mmr n=1

(26)

which make z(+) the classical path for a particle
in a potential V(x) and satisfying the boundary
conditions z(f) = z, z(0) = .

That is instead of finding the b; by the relations
given in Eq. (25). We could have obtained the
clagsical path from the equation

md'z/dr® = —aVix)/dz
12 C. Morette, Phys. Rev. 81, 848 (1951).

@7)
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satisfying the boundary conditions
x (O) = xOr

Then the b; could be found by expanding 3° =
[¢* — 2 — (z — x,)r/f] into the Fourier series

4hi b, . nwr
(m'lr) Z sin ;-

n=i n
To obtain the free-particle approximation, we sub-
stituted Eq. (23) into the right-hand side of the
mixed integration formula of Eq. (14) and obtained

the sequence
g

L) = (o7 [
X exp (i'tr Z} g“f) exp {% fot Im(y*)® dr

z(t) = 2.

(28)

— ?}, li.’L' + (2; —— x()) 21: + ll/v(g‘) + yc - 2/3:' dt}
(29)

where y° is given by Egs. (28) with the b; determined
by Eq. (25). Notice that forall » > 0

Livyl = I1[vyl (30)
if the potential is of the form
V =a+ Az {31)

This is true since Eq. (23) is exact for potentials
of this form and, therefore, the mixed integration
formula with Eq. (23) in its right-hand side is exact.

For other potentials, we have
IVl = lim L[V(y)].

y—o

(32)
This is true since when we take the limit as » — «
of Eq. (24), then the potential becomes
lim V[z + (& — z)t/7 + .0 + ¥ — il

= Vi + (@ — m)t/7 + ¢a(]

The potential is independent of the coordinate y,
hence the classical path »°(¢f) with the boundary
condition ¥°(r) = ¥°(0) = 0is y*(&) = 0. Therefore,

(33)

&=~Lvu+@+mm+amwt (34)
and Eq. (29) becomes in the limit ag v — «
lim 2ve)] = [ [ ew
X fo Vie + (= — )7/t + $u(O)] dr
=N de de d -
X exp ("5"" Z §l> (7,)”2 (7,)1/2 te (i)l/z' (3'3)
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Comparing Eq. (35) with Eq. (13), we see that
V(Y] = lim L[V(y)].

The advantage of this new sequence I/[V(y)] is

that it is expected to converge very rapidly since

the classical path makes the greatest contribution

to the integral.
As a matter of illustration, we will let

V(x) 37)

and calculate I’[V (y)] from Eq. (29). From Eq. (A5)
in the appendix, we see that the classical path y°

that goes in Eq. (29) is
oy _ 2 [er) [xzp — (=D"2] . (@)
y'(n) = T (w) n§l n3(1 — cv2'r2/nz1r2 sin ¢

Therefore, (2/4)8S, in Eq. (29) becomes

(36)

2 2
= imwz’,

tmi

5, = ——[—%(f + om0 + x?,)]

?
hTC 2k
mo't = [2° 4+ 25 — 2xz,(—1)"]
n’n’ — (wt/m)%]

h1r4 n=y+1
v w2t2
+1i> l:vr(——z—i)ff.

n=1

~ (=) - cra ]

Substituting this into Eq. (29), we get

rvwi= [ -

(38)

X exp [z ,.Z;; r(l - ;2::)5‘:]

X exp {—i(n%:)z(‘hm) "2_; [to — (— 1)"x]§‘n}

<o {-0ef 3 ¥ tﬁz = ?’%?]” ]
T W5 n'n” — (wi/r

mt o

- —w (33 + $$o + xo)} d¢, - ds,. (39)

After performlng the integration, Eq. (39) becomes
v 2t -3
nive) = 11 (1 - ,‘;’—,,)

[x + 25 — 2zxo(—1)"] }
n-l n [n - (wt/ﬂ') ]

o {2
I: z——w(x +xxo+xo)]
H(1~

n=1

—zmw X4

:2—7;) exp {m;:o [(z® + z3) ctn wt

—im (x — o) :l

— 2z, cSC wt]} exp [ o ; (40
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Taking the limit » — = of Eq. (40), we get
I[V(y)] = lim I}[V(y)]

yo

wt —im 2
= \sinwt/ P\ 2ms @ — o)

+ vme [(x + 2% ctn wt — 2xz, csc wt]} (41

This is by no means the simplest way to calculate
I[V(y)] for the harmonic potential, but we are
interested in I/[V(y)]. Notice that we would have
gotten very good agreement between I[V(y)] and
I'[V(y)] if we had chosen » such that

wt/vr < 1. (42)
This is true since
rve) = 1 (1 - “0mven. @
and since wf/vr < 1,
LIV G)] & TV Q)]+ Ot/2om). (44

V. HARMONIC-OSCILLATOR APPROXIMATION

We now wish to generalize the results of the last
section. We generalize the sequence I’[V(y)] given
by Eq. (29) so that it will be exact for all » if the
potential is of the form

Vz) = a + Az + ime’s’. (45)

The sequence I'[V (y)] that has these properties is

I (1 -

n=yp

Wl

vy = ’_27r—2) LV,

where I)[V(y)] is defined by Eq. (29). For w = 0
this is identical to Eq. (29). Also in the limit y — «

(46)

lim /(7)) = tim T (1 - %) zv)
= lim I][V(y)]
= I[V(y)]. 47
It is also straightforward to show that
L'Vl = I[V()] (48)

for all » if V(x) is of the form

V(z) = a + Mz + imo’2>
Therefore, I)/[V(y)] is the desired generalized se-
quence. Thls sequence as defined in Eq. (46) will
be called the harmonic-oscillator approximation. For

the same reasons stated in the last section, the
convergence of I’/[V (y)] is expected to be very rapid.
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We have now reduced the problem of solving the
Green’s function K(z, t; xo, 0) to a solution of Eq.
(46). In order to solve Eq. (46), the classical tra-
jectory must be known. However, in most prob-
lems of interest in quantum mechanics, the classical
path itself is a very complicated function when
written in the form z(f). So the problem of solving
the lowest order terms in Eq. (46) will be straight-
forward, but rather tedious.

V1. CONCLUSION

In Sec. III, we derived the mixed integration
formula (14). From this formula various methods
for solving the functional integrals can be derived.
For example Cameron uses it to get his Simpson
rule. The Simpson rule was constructed to give good
results for functionals that could be approximated
by third-degree polynomial functionals. This is us-
ually not the case for most problems in quantum
mechanics where one is working with expontenial
functionals and a polynomial functional of third
degree is usually a poor approximation. So in Secs.
IV and V we have derived with the aid of Eq. (14)
two different methods of solving functional integrals.

The free-particle approximation given by Eq. (29)
is constructed to give exact results in all orders of
the approximation for exponential functionals of the
form exp [[; (a + bz) dr], where a and b are independ-
ent of z. In Sec. V we improved the free-particle
approximation so as to give exact answer in all
orders of the approximation for exponential func-
tionals of the form exp [[{ (@ + bx + cz°) dr],
where a, b, and ¢ are independent of x. We called
this new method the harmonic-oscillator approxima-
tion and it is given by Eq. (46).

For other types of exponential functionals the
harmonic-oscillator and free-particle approximations
can be made as accurate as desired by taking higher
order terms in the sequence {ef. Eqs. (29) and (46)].
However, for the same reasons as previously stated
it is felt that only the first few terms of the sequence
will be needed to give reliable answers for most
potentials. Although these methods of approxima-
tions were only derived in one dimension they can
easily be generalized to many dimensions.

Many other approximating schemes can be con-
structed from the mixed integration formula (14);
however, the two that were developed in this paper

ROBERT L. ZIMMERMAN

seem to be the most useful for the problems that
arige in nonrelativistic quantum mechanics.
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APPENDIX

We wish to solve the classical trajectory with the
potential of the form

V() = imo’lz + (& — 20)7/t
-+ '/’v(g—) + /i yvlzr (Al)

where the notation is defined in Egs. (11a) and
(14a). The classical trajectory could be obtained
from Eq. (21); however, for our case it is much
simpler to find those coefficients that make S in
Eq. (24) an extremum, that is, those coefficients that
are determined by Eq. (25).

Since y(r) must satisfy the boundary conditions
y(0) = y(t) = 0, we can expand it in the series

0 - (4 5 Sun o).

mm. nm1 N

(A2)

‘We can write the action S in terms of the expansion as

_ = 2 - thztza:
§ = ba gan - n§1 nzﬂ_z
> A\ (Armh\} .
- X (;j’;) ( p ) [zo — (—1)"z]a,

— 1@+ xwe — ) + - . (A3)

We then find the values of a, that make S an
extremum. Substituting these values of a, in Eq. (A2)
will give us the classical trajectory.

The values of a, that make S an extremum can
be found by differentiating S in Eq. (A3) with
respect to the coefficients a, and then setting the
expression equal to zero and solving for the a,’s.
This is equivalent to Eq. (25). Doing this we get
the following values for the @,’s:

a, =0 for 1 <n <y,

o= (9_t> (m/hrt)lme — (12} ¢ o ag)

nrl (1 — &P/

Therefore,
¥ (7)

_ 2 (et [zo — (=1)"x]

2 (wr)2
- 2 2 2
r\r/ 5hn'(l — P/

sin (nl;-) - (A5)



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 7 JULY 1965

Time-Dependent One-Speed Albedo Problem for a Semi-Infinite Medium
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A Laplace transformation technique is used to determine the neutron distribution in a semi-infinite
medium which has been irradiated by a neutron pulse. The result is given in terms of known solutions
of Milne’s problem and of the steady-state albedo problem, which in turn are expressed by aid of
Case’s X-function. Simple asymptotic approximations, valid for ¢ >> 1, are deduced from the exact

result.

I. INTRODUCTION

T is well known that time-dependent transport
problems with given initial values can be formally
converted to steady-state problems by Laplace trans-
formation. In simple cases the transformed equation
can be solved rigorously, e.g., by the singular eigen-
function method of Case.'™® Then the solution of
the time-dependent problem is constructed by in-
verse Laplace transformation.

The indicated method has been used by Bowden*
for a problem with slab geometry, the general aspects
of which problem have been clarified previously by
Lehner and Wing.® A slightly different approach has
been used by Case' for an infinite medium with a
pulsed plane source. It seems worthwhile to extend
these investigations also to the semi-infinite medium,
in which case several explicit results can be deduced.

We restrict our attention to the one-speed equa-
tion with isotropic scattering and seek the neutron
distribution everywhere in an infinite half-space
following irradiation of the surface with a mono-
directional pulse of neutrons at ¢=0. The appropriate
equation (using units in which ¢ = v = 1) is

d
¢(zy My t; “0) + aa_‘f'l" p.s%

1
=2 vew by, (s

where z > 0, u, > 0, and the boundary and initial
conditions are

Y0, i, t; o) = po 8(p — po)8()) for u >0, (1b)
(1c)

* On leave of absence from the University of Ljubljana,
Yugoslavia. .

T'K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960).

2 K. M. Case, Recent Developments in Neutron Transport
Theo};g/ (Michigan Memorial Phoenix Project, 1961).

3 K. M. Case and P. F. Zweifel, Neutron Transport Theory
(to be published). .

4 R. L. Bowden, thesis, Virginia Polytechnic Institute (Re-

ort TID 18 884, 1963). See also: R. L. Bowden and C. D.

illiams, J. Math. Phys. 5, 1527 (1964).

8§ G. M. Wing, An Iniroduction to Transport Theory (J.
Wiley & Sons, Inc., New York, 1962).

'p(xrl-"y t;ﬂo)'—'>0 for z— ®,

and
Y(, m, L p) =0 for £<O0.

We shall also be interested in the distribution
1
Pam ) = [ Ve Lo, (@)

produced by a pulsed isotropic incident distribution.
Finally, we shall need the values of the neutron
densities and net currents, defined by

oz, t; po) = f-1 Y(x, B, t; po) du, 3

i@ ) = [ Ve Gunds, @

(and similarly for p*, j*). For convenience the factor
27 has been omitted here, which can be justified
by saying that ¢ represents the angular density
integrated over the azimuth.

Certain general properties of the solution are
immediately apparent. First, we notice that the pulse
initiates some transient discontinuities in the neutron
distribution. Evidently ¢ = 0 for « > ¢, since the
neutrons enter the medium with a speed which is
unity in the present notation. Moreover, a term
8(x — wot)8(u — mo)e”*, describing the distribution
of the uncollided neutrons, is contained in y. How-
ever, all such singularities die out exponentially, and
¥ becomes a smooth function for ¢ > 1.

Second, according to a reciprocity theorem,® the
following relation for the angular density of the
reflected neutrons must hold

v(0, —u, t; po) = (0, —po, ; u),

Finally, for an absorbing medium (¢ < 1), we
expect that the decay of the neutron distribution
is governed mainly by the true absorption rate, i.e.,

¢ L. M. Biberman and B. A. Veklenko, Zh. Eksperim. i
Teor. Fiz. 39, 88 (1960) [English transl.: Soviet Phys.—JETP
12, 64 (1961)].

u>0. (5)
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¥ should be roughly proportional to ¢ ' ~7°. After
an appropriate substitution is made, Eq. (1a) shows
that

(6)

where the value of ¢ is indicated by a superseript.
Hence it is sufficient to study the problem for a
nonabsorbing medium (¢ = 1), and therefore the
subsequent discussion will be limited to this case only.
Following Lehner and Wing® and Bowden,* we
multiply both sides of (1a)-(I¢), where now ¢ = 1,
by ¢""**dt, and integrate from 0 to «. The integral
converges for Re (s) > 1, and the transform

¥z, 1, b o) = ce” T (ex, by cf; po),

w i) = [ Ve m e A @)
is found to obey the equation
o)+ 28 = 2 e w0 d, (80

with the boundary eonditions
‘ps(O: M) “0) = Mo—la(,u - [Jo) for n > 0,

and

(8b)

(8c)

From ¢,(x, #; ue) the solution of the time-depend-
ent problem will be computed by inverse Laplace
transformation,

tpt(x;.“;ﬂe)—")o for z— .

‘P(x, M, t; “0)

: 1 vrie ~{1—a)t
= lim §_f ) \//s(.’l), M3 [10)6 ds, (9)
W= y-iw

where ¥ > 1. However, before carrying out this
inverse transformation it seems advisable to modify
it in the usual way by shifting and bending the
path of integration as far as possible to the left
in the complex s-plane. In order to be able to do
this we first must check the analyticity properties
of ¥.(z, u; mo) as a function of s. We shall start
with explicit expressions for this funetion.

II. PROPERTIES OF THE TRANSFORM
OF THE SOLUTION

According to Egs. (8a)—(8c), the function ¥, (2, &;x0)
coincides with the solution of the steady-state albedo
problem, normalized to unit ingoing net current, for
a semi-infinite medium with a macroscopic total cross
section s and a macroscopie scattering cross section
equal to unity. This problem has been solved by
Case, and we can copy his results, at least for real s.
The only novelty encountered with the present
problem lies in the necessity of performing an an-
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alytical continuation to complex values of s. We
shall postpone this task temporarily, and start with
the assumption that ¢ is real and > 1.

Besides ¥.(x, u; uo) we shall need later on the
solution ¢,{(z, n) of Milne’s problem, which is defined
by an equation like (8a), and the boundary conditions

(10a)
(10b)

In both cases we shall be interested also in the
neutron densities and net currents, which will be
denoted by Pc(x; #0)) Pa(x) and .7:(:13; I“O), jl(x)) re-
spectively. We normalize the solution of Milne’s
problem to unit emerging net current: 7,(0) = -—1.

All these quantities can be expressed in terms of
Case’s X-function, or equivalently, in terms of
Chandrasekhar’s H-function,” H(u, s) = [1 —
sV, + wX(—n, s)]". In Case’s notation the
formulas for ¥,(z, u; o), ete., are®>"®

1
(o + #0)X(—po, 8)

4sX(—v,, $)
X { vohi(vs)

¥.(0, ) =0 for u >0,
‘[’a(xx Fv) < 0(9") for 2 — o,

VT, 1) po) =

d’a + (Po)‘é: + (‘B)e— wwhre

»X(—», s)

+ / (voy T 0A0) b (o) ()e**” dV}. @an

‘P-(Oy ' 24 P‘-o) = {2<8 - I)(lu‘ + ”0)(”0 + }-‘0)
X X(~po, 9@ + WX (=, 917", 220, (12)
p.(0; o) = [(1 — ™ uolvo + o)X (—no, 917, (13)
75005 o) = [ + wo)X(—po, 9] (14
‘Pl(x’ ]J,) = 2(1 _1 SMI)IJ?; [X(P](;, S) ¢a+(p e—u{“
+ X————“—( _lv > ¢.-(ﬁ)e”/"°]
' X(=v,9 s/

5'; . A* (V)A ()qssv( )e / d”v (15)
\0:(0; “/‘)
=26 — DO — )X (=, 91", =0, (16

0. (0) = [(1 — 57| an

The following functions appear in the above
AT A dy

formulas:
1 1
, eXp [szl oL ] (18)

7 8. Chandrasekhar, Radiative Transfer (Oxford Univer-
sity Press, London and New York, 1950).
8 1. Kusder, Can. J. Phys. 31, 1187 (1983).

Xz, 8) =
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(with the integrand = 0 at » = 0),
A,(2) =1 — (z/s) tanh™" (1/2)  (19a)

(defined in the complex plane, cut along —1 <z < 1),

A%0) = A\G) £ ww/2s for —1<w» <1, (19b)
A =1 — (v/s) tanh™' », (20)
+v,(s) = roots of A,(v)) = 0,
Ally) = VOS‘I(Vg — 1)—l — 21)
boa(n) = ;—;;;—:1—,:—# (22)
$uli) = LP ==+ N)S6 — ), (23

where P indicates that we have to take the Cauchy
principal value of any integral over » or u of the
expression 1/(v — u) following that symbol. The
integral in (11), with the two singularities of the
integrand merging when u — uo, has to be under-
stood in the same sense as with the orthogonality
relation

. 606 o dui= w2006 = ), (29

used in full-range developments.'™ It can then be
seen that the right-hand side of Eq. (11) contains
the discrete term py'8(u — wo)e ***°, corresponding
to the uncollided neutron beam.

The neutron densities and net currents, belonging
to (11) and (15), follow immediately if we observe
that ¢,. and ¢,, are normalized to unit density, and
that the corresponding net currents are #=(1 — s™")»,
and (1 — s '), respectively.

We may introduce the “‘extrapolation distance”
g(s) and another parameter @(s) by

— X, 8)/X(—vo, 8) = eza/.,’ 25)
~X00 9K 8 = 5 e
: (26)

with the purpose of expressing p,(z) in a shorter form

Qv sinh st + ¢

p.(7) = v

1 " X(—v,s)

= = —az/¥
%l BOAR S

27)

When s — 1 one should use the well-known
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approximation

vo & [3(s — 1)]7} (28)

which leads to Q(1) = 3, whereas ¢g(1) = 0.71045.

Let us now turn to complex values of s. By re-
tracing the derivation of Eqgs. (11)—(17) one verifies
that they remain valid so long as s is such that
A,(2) has a pair of zeros. The condition for this
to happen is, according to Bowden,* that s belongs
to a certain region S; of the complex plane, as shown
by Fig. 1. This region is the conformal map, produced
by the function s = », tanh™ (1/3,), of the (say)
right-hand half of the complex plane of », cut as
mentioned before. Hence the boundary C of 8; is
the (double) conformal map of half of this cut.

The analytic behavior of ¥,(z, u; o) inside the
region S; of the complex s-plane is linked to the
properties of »o(s). This is the inverse of the pre-
viously mentioned function s = v, tanh™ (1/»,), and
its values can be read from the quoted figure. We
see there that the point s = 1 is a branch point
of »,(s), as shown also by the approximation (28).
Hence, if we want », to be uniquely determined
for s & 8,, a cut has to be drawn in the s-plane,
most conveniently to the left of that point. If we
chose », to be the particular root which is positive
for s > 1, then Re (v;) = 0 in the whole cut region S..

Expression (11) shows that inside S, the function
V.(@, u; uo) is regular in s, except for the branch
cut (0 < s < 1) due to »(s). The reason why
this cut is inherited by ¥,(z, u; o) is that, by de-
finition, only one of the discrete eigenfunctions,
¢or(m)e”**”, is involved in the expansion (11). Con-
sequently, when s approaches the branch cut from
above or below, two different limits ¥* and ¢, are
obtained, involving the negative and positive imag-
inary », in (11), respectively. Since ¢* and ¢, both
are solutions of Egs. (8a, b), the difference y* — ¢,
is a solution of the corresponding homogeneous prob-
lem, i.e., of Milne’s problem. (For Milne’s problem
s = 1 is no branch point because going around this
point merely interchanges the two discrete terms
in (15) and leaves the sum unchanged.) Taking
account of the value (14) of the net current at the
surface we find that

vz, u; o) — Vi@, 15 mo)
= =2 [no| [([vo]” + 1) X(—po, )17 ¥u(x, 1)

= —4i(1 — 8) [po| .00, —p)¥u(z, ), 0<s<1.
(29)

If s is in the external region S, (Fig. 1), the situa-
tion is different because A,(z) then has no zero and
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s
&

Fia. 1. Values of »o(s) plotted in the complex plane of s. The
values of s are given in parentheses.

the corresponding discrete term in the expansion is
missing. By the use of X,(z, s) = (1 — 2)X(z, 9)
instead of X (z, s) the following formulas are obtained
for this case:

(2, u; po) = m

! Xo(_V, 3)

X | mqbn(uo)iﬁn(ﬂ)e—"h dv, (30)
Va0, —p; 00) = [2s — D + w0
X X, (—Mo, S)Xo(_ﬂs 3)]_1’ u=0. (31)

Similarly as for s € S;, we now conclude from
(30) that ¥,(z, u; uo) is regular in s also for s € 8,,
Re (s) 2 0. However, we are still uncertain about
what happens when s crosses the boundary C sep-
arating the two regions.

One way to assure the analyticity of ¥,(z, u; uo)
across C would be to extend the existence theorems,
worked out by Lehner and Wing for the slab case,*'®
to the semi-infinite medium. An alternative method,
chosen in the following, consists in the comparison
of the limits of the explicit expressions (11) and (30),
when s approaches the line C from one or the other
side. First however, we have to insert a discussion
about the X-function, which itself is discontinuous
ats € C.

It can be inferred from the definition (18) that
the change of X (2, s), as s crosses C, is expressed by
[0 — 2)X (e, 8)11.;:?: = [(1 — 2)X(, 8)]0;.;3?- (32)
Thus, (v, — 2)X(z, s) for s & S, and (1 — 2)X(z, s)
for s & S, represent one and the same analytic
function, which we may denote by X,(z, s), if the
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definition is adapted as follows:
(1 —-2X@E,s) for sE S,
(o — 2)X(,8) for s€E 8§,

with X (z, s) given by (18).

It may be mentioned that the analyticity of
X(z, s) in both variables is obvious from a complex
representation, which in a different form has been
given by Chandrasekhar,” and which also readily
ensues from the above definition:

Xoz, 9) = { (33)

1 AR dY
o f_,.w Iy (o) 7 —2
In Xolz,8) =9 4+ In AAZ(:?)’ Re(d) > 0
1 AR
2 f_‘-m In A(o) 2 — 2
Re (2 < 0, (34)
with A,(®) = 1 — s'. For fixed s the function

Xo(2, s) has no singularity in the z-plane, cut along
(0, 1), and it has one simple zero at z = »,(s),
Re (v,) > 0, only if s € 8;. The zero disappears
by crossing the cut when s crosses the boundary C.
Vice versa, for fixed z there is no singularity in the
s-plane, cut along (0, 1), and for Re (z) > 0 there
is only one zero at s = z tanh™ (1/2). The zero
disappears by crossing the cut when z erosses the
imaginary axis.

We return now to the problem of the behavior
of ¥,(z, u; mo) at s & C. For the case x = 0, it is
immediately clear, in view of Eq. (33), that (31)
is an analytical continuation of (12). For = > 0,
an apparent difficulty arises from the discontinuity
of the individual terms in (11) and (30), when s
crosses C. Moreover, certain terms have poles at
those values of s which make »,(s) equal to g or w,.
However, a closer inspection proves that all these
singularities cancel each other, so that ¢,(z, u; uo)
is, in fact, continuous across C, and consequently
regular in the whole right-hand half-plane of s, cut
along 0 < s < 1. This is what we wanted to know.

The tedious term-by-term comparison of (11) with
(30) can be avoided by transforming both expres-
sions into a unique complex representation, from
which the analyticity in s is evident:

—8x/ o

Kba(xv B ”'O) = #0_16(# - HQ)G
- 1
25X o(— o, s) 2w

% on(—z,s) 1

—asz/e
AD G-pe—m  *

(3%)
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The integration over z is carried out along a contour

which starts and ends at z = 0, with Re (z/s) = 0

at z — 0, and embraces the branch cut 0 < z < 1,
as well as the pole z = », of the integrand.

We see, by the way, that the discrete term in
(11) is due to the residue of the integrand in (35)
at z = »,, and that the expressions (12), (31) stem
from the residue at z = pu.

III. FINAL FORM OF THE SOLUTION

The above conclusions permit us to deform the
integration path in (9) as shown by Fig. 2. Thereby
and by the use of relation (29) the integral in (9)
is put into a more convenient form,

1[/(3:, M, t; FO)

= 7%]; (1 = 8) ()| ¥u(0, —po)¥u(z, u)e'“‘"" ds

. 1 ta s
+ llmz—ﬁf Vo(@, 1; mo)e 7" ds.

W=+ —iw

(36)

This, with the expressions (16), (15), and (30) sub-
stituted, represents the final result. Expressions for
oz, t; po) and j(z, t; uo) follow immediately.

For z = 0 a further simplification is possible
because the expression (31) can be analytically con-
tinued to Re (s) < 0, which for z > 0 was impossible,
because of the factor ¢ **” in the integrand in (30).
Now the integration path can be bent still further
to the left, and we end up with a closed loop en-
circling the branch cut. This means that the last
term in (36) drops out for = 0, so that

0O, = i) = 2 [ (1 = 9) @)

X 'pl(O) _/"0)11/:(01 _I‘)e_(l—.)t ds) 1] Z 0. (37)

The validity of the reciprocity relation (5) is clearly
demonstrated. The values of X(—u, 8) involved in
¥,(0, —u) through Eq. (16) can be taken from graphs
presented by Bowden.*

Im(s)

|

Fi1g. 2. Integration

paths for inverse Laplace
Rels) transformation of
i Sbn(xr I’ I‘O)-
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The neutron density and the net current at the
surface of the medium are obtained from (37) by
substituting the factor ¢,(0, —u) of the integrand
by the expression (17) and by 7(0) = —1, re-
spectively, and by adding the contribution due to
the incident neutrons, pi.(0, & mo) = o 8(t),
Jine(0, t; mo) = 6(¢). Especially simple formulas
follow for the case of isotropic angular distribution
of the incident neutrons:

p*(0, ) = 8(t) + ' 21, (50) (38a)
- 8(t)+i|:1 -%t+35—2t’ - ---:|(38b)

- (1rt3)_*|:1 S Lt LA O(t's)],
(38¢)
#0, 1) = 25() — =7 f AL — 9) ole)] € 9"* ds
§39a)
= 38() — ¥(1 — In2) + OQ) (39b)

= —(3x")"H1 — (27/20)5" + O(£ D).
(39¢)
The formula for p*(0, f) has been reduced to an
expression containing the modified Bessel function
I, by aid of the substitution s = (1 — cosf),
which leads to Poisson’s integral representation for
this function.’

The initial values of the reflected angular density
could be computed from Eq. (37) by substituting
t = 0. However, an easier way is to expand the
previously mentioned closed-loop integration path
into a very large circle, instead of shrinking it onto
the branch cut. Observing that X,(z, s) = 1 + 0(s™?)
for s — o, as can easily be shown, we obtain,
using (31),

YO, —u, 0; ) = 2 + po)]™, w>0. (40)
This angular density is entirely due to neutrons

scattered only once, as one can infer directly from
the transport equation.

IV. DISCUSSION

The above results closely resemble those obtained
by Bowden for the slab problem. The main difference
is that in the latter case two discrete terms, in-
volving the factors e***”, enter a development
analogous to (11). Therefore the function ¥, (z, u; uo)
for the slab needs no branch cut, but has instead
a finite number of poles at certain ‘“‘critical” values
of s inside the interval 0 < s < 1. The poles fill

® Higher Transcendental Functions, edited by A. Erdélyi
(Mc(i‘traw-Hill Book Company, Inec., New York, 1953),

Vol. I
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up this interval more and more densely as the
thickness of the slab is increased.

Thus in the slab case the integral over the branch
cut in (36) is replaced by a sum over the residues.
Actually, Eq. (36) can be deduced as a limit from
Bowden’s result [Ref. 4, Eq. (5.12)]. This is done
by proving that the factor (2/7)(1 — s) |re(s)| of
the first integrand in (36) is equal to the limit of
the product of the pole number density and a
normalization factor.

The individual terms of the mentioned sum, just
as the integrand of the branch-cut term in (36), can
be pictured by standing waves decaying at various
rates, slower than ¢ ‘. Each wave corresponds in
the slab case to a solution of the critical problem,
and in the present case to a solution of Milne’s
problem for a multiplying medium.

The last term in (36), when y¢,(x, u; wo) is de-
veloped according to Eq. (30), represents a sum
over a continuous family of traveling waves,'® all
decaying like ¢7%,i.e., with a decay time equal to
the mean time between collisions of a neutron. Only
ingoing waves, with speeds » ranging from 0 to 1,
are present in the case of a semi-infinite medium,
whereas waves propagating in both directions are
included in the slab solution. As shown by Eq. (37)
those waves do not contribute to the angular density
of the neutrons reflected by a semi-infinite medium.

In view of the fast decay rate of the traveling
waves we may say that their sum describes the
transient effects mentioned in the introduction. Actu-
ally this sum contains the uncollided beam term
8(x — wmet)d(u — mo)e” !, since the Laplace transform
of this term, wy'8(u — mo)e *™*, is contained in
lﬁ,(-’ﬂ, M5 #o)-

On the other hand, one expects the branch-cut
term in (36) alone to describe the behavior of ¢
for large values of ¢, so that this term represents
an asymptotic approximation. Some simplification,
consistent with this kind of approximation, can
be achieved by using (28) and by substituting
‘ps(()} _NO) ~ \bl(O; _ﬂo)y a'nd; for small z only,
V.(x, u) = ¥i(z, u). An expression results, which
contains the integral [} (1 — s)fe™"** ds. For t>> 1
it is permissible to shift the lower limit of this
integral to — «. Then, with (16), the expression
simplifies to

Ip(.'l:, My t; F'O) ~ (%Wt3)_%[X(_ﬂ01 1)]_1‘l/1(x7 ﬂ)'

Approximations for p, j, and for ¥(0, —p, ¢; ko)

(41)

10 A, M. Weinberg and E. P. Wigner, The Physical Theory
of Neutron Chain Reactors (University of Chicago Press,
Chicago, 1958), p. 235.
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follow in a simple way upon application of the
formulas (17), and (16), with (28).

In a similar way, by substituting the asymptotic
part of (15) into (36), we arrive at a different
asymptotic approximation, valid for ¢t >> 1, £ > 1.
Let us write down only the expression for the
neutron density, which follows from the asymptotic
part of (27):

p(x, ; wo) A 33 X (—po, D7 + ¢(1)]
X exp {— [z + o). (42)

Tables of H(u, 1) = v3/X(—g, 1) and of p(z),
needed for the evaluation of (0, —p, ¢; pg) and
p(z, t; uo), according to the approximations (41) and
(42), are available.”""!

Various refined asymptotic approximations could
be conceived by making less crude substitutions for
the functions involved in the exact expressions. For
instance, we observe that the factor (1 — s)te™ """
of the first integrand in (36) is zero at s = 1. Hence
it seems advisable to approximate the remaining
(finite) factor (1 — 8)* [o(s)| ¥.(0, —po)¥.(z, #) by
its value at s slightly below 1, rather than at s = 1.
We may require that this procedure should be correct
if the latter factor were a linear function of s. We
find then that for ¢ >> 1 the appropriate value of
sis 1 — 3¢t '. This, with (15) and (16), has to be
inserted into
'p(x ) My 2 ’ F'O)

R @)1 = 9 po@)| 0, —m) (e, B), (43)
which is valid for ¢ 3> 1, z < ¢}, as one can show.
The improvement of (43) over (41) can be judged
from the fact that the first two terms in (38¢) and
(39¢) follow from (43), whereas only the first term
is obtained from (41).

It should be mentioned that the approximations
(41)—(43) can be deduced also without knowing the
exact result, solely by considerations based upon the
diffusion equation and upon a reciprocity theorem.
Such a derivation, though not rigorous, has the
advantage of being amenable to generalizations to
anisotropic scattering and to energy-dependent
problems.
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A generalization of Ford’s method, concerning the asymptotic expansions of solutions of differ-
ential equations with polynomial coefficients and with three or more regular singular points and one
irregular at infinity, is presented. The analysis is subsequently extended to the special case of integral
values for the difference of exponents of the differential equation, thus providing the complete asymp-
totic expansion of the second, logarithmic solution of the equation. Explicit formulas for the evalu-
ation of the constant coefficients of the expansions are given; each coefficient is expressed in terms of
a single solution of the adjoint difference equation associated with the original differential equation.
Differential equations possessing singularities in excess of the hypergeometric equation (3 regular)
or its variations, appear as separated solutions of the wave equation in certain stratified media whose
index of refraction is a continuous function of position.

1. INTRODUCTION

HE asymptotic expansion of a function f(z)

defined by a Maclaurin series has been the sub-
jeet of numerous investigations. A comprehensive
and original treatment is due to Ford'™® to whom
the reader is also referred for a fairly complete list
of references. Ford’s method is based on the be-
havior of the coefficients a, of the Maclaurin series
for large values of n and can be applied to series
with finite or infinite radius of convergence. In the
latter case f(2) is an entire function. The applicability
of the method is restricted by the nature of the
singularities of f(z) in the complex z-plane.

An important application is concerned with the
asymptotic expansions of solutions of linear ordinary
differential equations with polynomial coefficients.
The method is successful in the following two cases:
(1) All singularities of the equation are regular.
(2) Only one singularity (conveniently placed at
infinity) is irregular with rank not exceeding 1,
while all others, in the finite z-plane, are regular.
In both cases the equation and its solutions possess
a finite number of singularities one of which (regular)
may be at the origin. The order of the equation is
finite but unrestricted. The classical method of
Frobenius applied around the origin expresses a solu-
tion R(z) in terms of a Maclaurin series whose co-

* Supported by NSF Grant 20225 and Contract Nonr-
6(32).
186’[ (Pre)sent address: Research and Advanced Development
Division, Aveo Corporation, Wilmington, Massachusetts.
1J. G. Fikioris, Tech. Rept. No. 395, Cruft Laboratory,
Harvard University (1963). Also Part II of Ph.D. thesis in
Applied Physics, Harvard University (1963). .

2 W, B. Ford, The Asymptotic Developments of Functions
Defined by Maclaurin Series (Chelsea Publishing Company,
New York, 1960). . .

3 W. B. Ford, Studies on Divergent Series and Summability
(Chelsea Publishing Company, New York, 1960).

efficients a, obey a recurrence formula with a finite
number of terms. Essentially E(2) is defined by the
recurrence formula. Based solely on this definition,
that is without reference to the fact that R(z)
satisfies a certain differential equation, Ford’s theory
proceeds to obtain its complete asymptotic expan-
sion. In an entirely independent manner it yields
results in agreement with the theory of differential
equations and, at the same time, provides explicit
formulas for the evaluation of the constant coeffi-
cients that linearly connect R(z) with the asymptotic
series in the expansion. Only in special cases, admit-
ting a straightforward application of an integral
transformation, is the theory of differential equations
able to determine these coefficients.

As a general outline, the method proceeds through
the following steps: Transformation of the recurrence
formula into a difference equation with polynomial
coeflicients; complete solution of the latter; detailed
examination of the analytic properties of the solu-
tions and of their behavior for large values of the
argument in the right half-plane. Based on this
information the asymptotic expansion of R(z) is
obtained with the use of certain theorems contained
in Ref. 2 by Ford. In the last chapter of his book®
Ford applies his method to second-order equations
and obtains explicit results for the two independent
solutions R, and R, around the origin. The constant
coefficients 4,3, ete., in the asymptotic expansions

Ri(2) ~ AsRs(z) + ALR4(2), (L.1)
Rz(z) ~ A23R3(2) + A24R4<z); (1-2)

are determined fin terms of the solutions of the
difference equations obtained from the recurrence
formulas defining R, and R,. Each coefficient de-
pends on all the independent solutions of the cor-
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responding difference equation. As long as the dif-
ference of exponents ¢,» = o, — o, (= 0) at the
singular point z = 0 differs from 0 or a positive
integer, the process is applicable to both R, and R..
If o, is equal to 0 or a positive integer the method,
without alteration, applies to the first solution B;;
the second solution R, becomes logarithmic, and
this case, to the author’s best knowledge, has not
been treated up to the present time. Ford refers
to it as a subject for further research.

In this paper, Ford’s method is slightly modified
and subsequently extended to the second, loga-
rithmic solution of the differential equation. In
addition to the associated difference equation its
adjoint is also introduced; A,3(A;,) can then be
expressed in terms of a single solution of the latter,
say N;(y)[N.(y)), which one proceeds to determine
explicitly without bothering about the rest. A cor-
responding statement can be made about A, A
when ¢;, differs from 0 or an integer. Notice also
that the order of the difference equations (and, there-
fore, the number of their independent solutions)
is independent of the order of the differential equa-
tion and, in general, higher than 2. The main ad-
vantage of this more compact formulation, however,
is the fact that it can be extended to the special
but important case of the second, logarithmic solu-
tion R, of the differential equation, whenever ¢,; = 0
or a positive integer. A,3(4.,) is now determined
in terms of N3(y), Ni(y) (N4, N}) the same particular
solution of the adjoint difference equation that ex-
presses A;3(4.4). The final formulas for all A’s are
especially adapted to desk or machine computations.
They possess & so to speak ‘‘inherent-checking”
property, which, at the same time, reveals the
accuracy of the computations. This statement, and
certain previous ones, will become clear in the course
of the analysis and after the explicit development
of the final formulas.

Differential equations with polynomial coefficients
possessing singularities in excess of the hypergeo-
metric equation (3 regular) or its variations, appear
as separated solutions of the wave equation in cer-
tain stratified media whose index of refraction is
a continuous function of position. In particular, the
radial equation for radially stratified media in spher-
ical or cylindrical coordinates, where both the scalar
and vector wave equations are still separable, may
be put under the above form for a wide variety
of “stratification functions.” Outside a finite sphere
(or cylinder), the radial solution that satisfies the
radiation condition corresponds to integral values
of the separation constant. Satisfaction of boundary
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conditions for finite values of the radius and ‘“‘near-
field” computations require the analytic continua-
tion of this solution in the vieinity of the origin,
in the form

Ri(2) = AuR,(z) + ApR.(2). 1.3)

In this case ¢, = 0, 1, 2, +++ and R,(z) becomes
logarithmic. Thus, in an indirect way, B.(z) appears
in a physical problem and the necessity of obtaining
its complete asymptotic expansion (1.2) arises.

2, SERIES SOLUTIONS OF THE
DIFFERENTIAL EQUATION

Convergent Series Solutions Around x = 0

Without loss of generality the following specific
differential equation is considered

dZR n a—2b dR
> T @+ o)z + b dr
— b v(u -+ 1)]
+ [1 + ST = R(z) = (2.1)

a, b are constant parameters, in general complex,
while », the separation constant, is real and positive.
The above form is a special case of the radial

equation
Rr@ — L& ()R<x>+[f(x> ”—<—+—Q]R<)

(2.2)

for transverse magnetic waves in spherically strati-
fied media*®; = ko is the radial distance in
electrical units and f(z) the stratification function
expressing the dependence of the index of refraction
on the radius. For the simple form

z+a _
@) = i +b,c—a

Eq. (2.2) reduces to (2.1). [The explicit results
obtained in this paper have been used to calculate
the behavior of a biconical antenna immersed in a
radially stratified medium characterized by (2.3).
This application is published elsewhere.®]

Equation (2.1) has three regular singular points
atz = 0,2 = —a, 2z = —b and an irregular singu-
larity of the first rank at z = « (Ref. 7, pp. 417-428;
Ref. 8, pp. 58-77). Since it contains only three

¢ C. T. Tai, Appl. Sci. Res. Sec. B 7, 113 (1958).

5 C, Yeh and Z. A. Kaprelian, Umvers1ty of Southern
Cahforma Techn. Rept., Elect. Eng. Dept. (November 1960).

¢ J, G. Fikioris, Tech. Rept. No. 390, Cruft Laboratory,

Harvard University (1963). Also Part I of Ph.D. thesis in
Applied Physics, Harvard University (1963) and IEEE Trans,
Ant. and Prop., AP-13, 289 (March 1965).

7E. L. Ince, Ordmary Differential Equations (Dover Publi-
cations, Inc., New York, 1956).

A, Erdély1 Asymptotzc Ezxpansions (Dover Publications,
Inc., New York, 1956).
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SOLUTIONS OF DIFFERENTIAL EQUATIONS

independent parameters (a, b, ») it is not the most
general type of second-order equation with the same
singularities. It was chosen because it corresponds
to a certain physical problem and because the dif-
ferences between this and the general case are
trivial. Ford has shown that the analysis depends
mainly on the nature and number of singularities
of the equation,’ the number of independent param-
eters it contains being unimportant in this respect.
Variations of the above form, eg., five regular
singular points, can be treated in essentially the
same way. The particular choice of (2.1) does not
restrict in the least the representative character of
the case under consideration.

Following the classical method of Frobenius first
write (2.1) in the form:

[2* + (a + bz + able’R"(z) + c2’R'(z)
+ [=* + 202® + (@ — ¥* — )2’
— v -+ Da + bz — v + Dad]R(E)

= Ty(@)2’R'"(x) + T\(x)zR'(z) + T.(2)R(z) = 0.
2.4)

Substituting the formal series

S g

n=0

R{x) =

a five-term recurrence formula is obtained for the
coefficients a,:

> Gt + 0 — m) = 0;

a; =0, j=1,2,3 -, (25

where
fo(e) = able(e — 1) — »(» + 1)]

=oblz + »)(z — v — 1),
H@ =(@+ bz — 1) + ¢z

— {a+ bp( + 1),
fo2) = 2(z — 1) + &® — »(» + 1),
fa(2) = 2a,
fulz) = 1. (2.6)

Indicial equation: fo(v) = able + »)(c —v ~ 1) = 0
with roots

o, = v+ 1,

G2 = oy — 05 = 2w 4 1.

@.7

gy = =P,

If 2v + 1 differs from an integer two independent
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particular solutions of (2.1) are defined as follows:

R@ =1+ 0], lol < min (al, ),

2.8)
R =1+ La], lel < min (al, ),
(2.9)

where the a,’s are obtained from (2.5) with ¢ =
6; = v + 1 and g, = 1, while for the b,’s (2.5) is
used again with ¢ = ¢, = —»p and be = 1. Notice
that B,(0) = 0, R,(0) = = 0 is a branch
point for both solutions.

If 2v + 1 is equal to a positive integer or zero
the first solution R,(z) is again defined by (2.8),
(2.5). The second independent solution R.(z), how-
ever, has a logarithmie singularity at £ = 0 and
is no longer defined by (2.9) (Ref. 9, pp. 200-201).
In this case put
Ry(2) = In zR,(2) + 8(2); S(2) = §_‘5 b, (2.10)
where Ry(x) = 2.2 @.2™""", ap = 1, is the first
solution defined by (2.8), (2.5). Subst1tute into (2 4)
noticing that B,(x) satisfies (2.4):

To(@)x®S" + T(2)zS’ + T.(x)S

= To(x){Rl — 2zRi] — T\(®)R;. (2.11)
Use the series expressions for S, R, and multiply
by z":

Zﬂ: bx"f(x, n — ) = 2™ i a2 "F(zx, m + v+ 1),

" 2.12)
where ‘
f(x’ 2) = ?;5 fi(z)xi» f:‘(z) as in (2'6)1 (2'13)
F(z,2) = i F,(@, (2.14)

Foe) = —ab(2e — 1),

Fgy=—-(@a+bt2~1) —c¢

= —2(a + b)z + 2b, |
F,(¢) = -2+ 1. (2.15)

Since f(x, n — ») and F(z, m + » + 1) are poly-
nomials in z, it is obvious, incidentally, that Eq.
(2.12) cannot be satisfied unless 2» + 1 is equal
to a posi’cive integer. Now put n = m + 2v 4 1

T. Whittaker and G. N. Watson, Modern Analysis
(Cambrldge University Press, Cambndge, England, 1946),
American ed.
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in its right-hand side:

> b f@, =) = D G- Flz.n — ).
n=2y+1
(2.16)

n=0

Since a_, = a., = --- = 0, the second summation
can be started from n = 0. The lowest exponent
of £ is n = 0O with coeflicient b,f,(0 — ») = 0.
Forl =n < 2,

4
D faln —v — m)dym = 0,
m=0
d-—i = 0! .7= 1v21 37 Tt (217)
d, = bifbe, do=1, n=0,1,2 --+. (2.18)

Since fo(n — ») differs from O for all these values
of n, the recurrence formula can be useds uccessively
to yield dy, ds, + -+ , ds,. For n = 2» + 1, however,
fo(v + 1) = 0; the corresponding equation can only
be satisfied by choosing conveniently the value of
bo, left undetermined so far, ie.,

by = —ab( + Ddofi() + dopifolv — 1)
+ dzy—zf:s(l’ - 2) + d2v—af4(1’ - 3)]—1-
by, by, -+ , by, may now be evaluated using b, = bod...

For n > 2v 4+ 1, Eq. (2.16) yields
4
S fult — v = Mbper = Gz Foln — )

m=0
+ @z Fi(n — v — 1) + an—2v-—3F2(n - v — 2)-
(2.20)

(2.19)

This equation may be used for all integral values
of n, including (2.17) as a special case, since a, = 1,
a@_, = a_, = --- = 0, The initial conditions

by =b_p,=0b_, =0, b, as in (2.19)

are sufficient to satisfy all requirements for the
coefficients b, of S(x). Thus, for n = 0, Eq. (2.20)
reduces to b_, = 0 and by repeated applications
it yields b_s = b_g = -+ = 0, as required.

The process so far has left b.,., undetermined.
Inspection of (2.20) shows, however, that in addition
to the set (b,;n = 0,1, 2, - - ) it can also be satisfied
by the set (b, + k@._»,-,), where k is a constant,
the reason being that the set (@,_»,-) satisfies its
homogeneous part. In fact for

n = 2V + 1 + m; bn = b2'+1+m = Bm}
Eq. (2.20) becomes

(2.21)

(2.22)

iBm_jf,-(m-l-u-l- 1 - ]) = amFo(m"‘V-l_ 1)

b G Fi(m + ) + GmoFo(m + v — 1), (2.23)

J. G. FIKIORIS

Its homogeneous part is satisfied by the set a,, a,, - - -
as (2.5) with ¢ = ¢, = » + 1 reveals.

bs,+1 can be chosen arbitrarily. In the process
of using (2.20) for the b,’s the simplest choice is

bzyer = By = 0. (2.24)

The remaining b,’s are evaluated using (2.20), (2.21).
A nonvanishing value for b;,,., = B, means simply,
that S(z), and consequently R,(z), contain the addi-
tive solution b,,.,R,(z), which can be discarded in
the definition of the second independent solution
R,(x). Without ambiguity the following definition
is adopted

Ry(@) = InzR\(z) + 2" 2 b.2"; |z| <min (la], [b]);
n=0

by =0, b, asin (2.19).  (2.25)

The power series representations that have been
obtained for the two independent solutions R,(z)
and R.(r) are valid only within the circle |z| <
min (Ja|, |b]), where they both converge uniformly
and absolutely. Their analytic continuation outside
this circle, in fact into whole regions of the 2-plane
where z varies from 0 to «, can be obtained with
the use of a bilinear transformation of the independ-
ent variable in the form

t=z/(x+p), z=npt/(1—1.

The constant p is conveniently chosen in each case
so as to optimize the convergence of the resulting
series in ¢, or to map the half-plane of interest,
wherein z varies from 0 to o, within the unit ecircle
t =1, placing r = —a,z = —boutside it. z = 0,
—a, —b, ©» aremapped at{=0, a/(a—p), b/(b—p), 1,
respectively,' which now appear as the only singular
points of the resulting differential equation in ¢,
preserving their nature and rank. This is a well-
known property of bilinear transformations (Ref. 7,
p. 437). Power-series solutions R,(¢), R.(#) around
t = 0 (x = 0) can be obtained in a similar way
and can be easily connected tothe previously de-
fined R,(z), R;(x) by simple comparison of behavior
in the vicinity of the origin.' The former series
converge within |ff = 1, for example, and provide
the analytic continuation of (2.8) and (2.25) into
certain regions of the z-plane outside [z = min
(lal, [b]). Numerical computations have shown that
the series in ¢t can be used for values of |z| three
to four times larger than the ones possible in con-
nection with (2.8), (2.25). In certain cases they
proved capable of carrying the computations into
the region of validity of the asymptotic expansions

(2.26)
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of R,(x), R.(z) and provided a check on the formulas.
Since R,(t), R.(t) have no connection with the
specific aim of this analysis no explicit development
or further mention will be made of them.

Asymptotic Solutions R;(x), R,(x) Around x = «

As £ — o the coefficients of R’ and R in Eq.
(2.1) vary as

4] ~ —2
x4+ a)x + b) 0@™),
c W+ 1) -1
l+x+b = 14+ 0@™).
Point z = « is an irregular singularity of rank 1

(Ref. 8, pp. 58-77). Formal descending series solu-
tions around x = < can be obtained by well known
procedures in the theory of differential equations’®
(based essentially on the method of undetermined
coeflicients). For example the method explained in
Ref. 8 (pp. 58-77) yields'

3 @
<: i Z) e“”x_"[l + > h,,x_"], (2.27)

=1

R; 4(x) ~

{z |~

Wz _—p 9_ i L —
Rour~ e (1 + {2 + [(2w><2w + 1) Yo

are obtained, which will serve for comparison later.

For real a, b: ps = p,, where the bar signifies
the complex conjugate, while always w; = @,. Since
from (2.29) all g, are real the recurrence formula
(2.28) yields as coefficients 4, for B; the complex
conjugates of the coefficients of R,. The same is
obviously true for the coefficients ¢, in (2.30). This
means

Ri(z) = R,(%); a, b real, (2.31)

and for real 2

Ri(z) = R.(z). (2.32)

All the above expressions are valid irrespectively
of the value of ». The critical line, or Stokes line,
is given by Re (wz) = 0 (Ref. 8, p. 72). With w = ¢
it turns out to be the real axis: Im z = 0. Any
solution E(z) of Eq. (2.1) can be expressed asymp-
totically as a linear combination of the above formal
solutions

R(@) ~ AiR3(z) + AR (2); (2.33)

this expression holds uniformly in each of the upper
and lower half z-planes separated by the Stokes line
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where w; = %, p; = —ic/2 are used for R, and
w, = —1, p, = 1c/2 for B,. The expansion coeffi-

cients &, are determined from the recurrence formula

n+1

20)'nh,, = (n + ;—w)(’n + '26; —_ 1>h"—1 + ”2 QMhn+l—m;

hy =1, n=1,2 .-, (2.28)
where
do = 1, g =€ (2= _V(" + 1) - va (229)
—(—y| pafr =1 _ 1 _ )
&= (=D [b ( % "2 ¢
n—li_3(n_l))] = e
o (26 4a , m=3.4,

The series appearing in the above formal representa-
tions (2.27) are normal asymptotic series in the pre-
cise sense of Poincaré’s definition (Ref. 7, pp. 168—
174, 444-445, Ref. 8, pp. 69-72). If [(z + a)/(z + b)]}
is expanded for |z| — « by the binomial theorem,
the alternative expressions

+1)— cb](zw)"‘}}c +h4 8y ) (2.30)

Im 2 = 0. The coeflicients 4;, 4, may, or course,
change values from one plane to another for the
same solution R(zx) (Ref. 8, p. 73). A similar com-
bination expresses R(z) along the real axis.

The main purpose of the analysis that follows is
to find explicitly expressions like (2.33) for the
particular solutions R,(x), R.(x) defined in the pre-
ceding section, in both halves of the z plane and
along the real axis.

3. ASYMPTOTIC EXPANSIONS OF Ri(z), R: (z)
FOR LARGE ||

Solution of the Associated Difference Equation

As outlined in the Introduction, the recurrence
formula (2.5) is first transformed into a difference
equation. Replace the index » by the continuous
variable z and a, by the general function u(z), such
that

u(n) = a,, n being an integer,

3.1

to obtain

42)‘,..(:6 + ¢ — mu(z — m) = 0.

m=0
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Advance z to z + 4, i.e., write x 4+ 4 for z:

ifm(x+a+4—m)u(x+4—m)=0. 3.2)

m=0

At this point Ford’s procedure is slightly modified
by substituting

(3.3)
34)

z+ o=y,
u(@) = o(x + o) = v(y).
The equation becomes
PaWv(y + 4) + Py + 3) + Py + 2)

+ 2.y + D + poylo@y) =0,  (3.5)
where
W) = foly + 4
= ablly + Dy + 5 — 2@y +4) —»( + 1)),
pay) = fi(y + 3)
=@+by+3)uy+4
—(@+3)y+3) —@+bdpi+1), 3.6)

n(y) = f:(y + 2)
=@y+2)@y+3 —2y+2)
+ad =+ 1),

7)) = faly + 1) = 2q,

poy) = fu(y) = 1.

These equations express the p(y)’s in forms suitable
for the solution of Eq. (3.5) by the method of
Laplace’s transformation (Ref. 2, Chap. VIII, Ref.
10, pp. 478-501, Ref. 11, pp. 57-88). Being a linear
difference equation of the fourth order with poly-
nomial coefficients, Eq. (3.5) possesses four independ-
ent solutions. For the general theory of these equa-
tions and for certain of its results, of which continuous
use will be made in what follows, the following refer-
ences are cited: Ref. 11 (Chaps. I, III), Ref. 10
(Chaps. XII, XV), Ref. 2 (Chap. VIII). The aim
is to find that particular analytie solution #(y) of
(3.5), which satisfies condition (3.1), or, in terms
of ¥ and #(y), the conditions

in+v+ 1) =a,

for all integers n and for R, (2), 3.7)

10 L, M. Milne-Thomson, The Calculus of Finite Differ-
ences (MacMillan and Company Ltd., London, 1951).

U N, -E. Nérlund, Legons sur les équations linéaires aux
différences finies (Gauthier-Villars, Paris, 1929).
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i(n — v) = b,
for all integers n, 2v + 1 # integer,

and for RB,(2). (3.8)

The method of Laplace’s transformation is applied
by assuming a solution in the form
- L f v-1
where [ is a line of integration in the complex ¢{-plane,
suitably determined later, and ¢(f) is found from
a certain differential equation, as will be seen in

the following. Substitution in (3.5), integration by
parts, and use of Eqs. (3.6) for the p(y)’s yield

[ tu—l[t2¢2(t)¢”(t) — (DY () + do()¥(D] dt
+ [I(¥, )l = 0,

where
ba(t) = abt’(t + a7t + b7, (3.10)
&:(t) = —2ab®t + a” )t + b7Y) + cf®, (3.11)
$ot) = —»(v + 1)abt’(t + ™)t + d77)
+dt+a), (312

IW, t) = abt'™*( + b7")

X Y@y + 1) + a™") + 2]

— 'Ot + a7} (3.13)

The conclusion is that (3.9) provides a solution of
(3.5) if ¥(t) is a solution of the differential equation

abt'(t + a7t + ¥ @) — (Y ()
+ (¥ (@) = 0,

and the path of integration [ is chosen so that 1(y, t)
has the same value at both extremities of the path
when it is open, or so that I{(y, ) returns to the same
value if [ is closed and ¢ returns to the same point
after describing it.

The choice of ! is based on the behavior of the
solutions of (3.14) at the vicinity of its singularities.
The equation has three regular singular points at
t, = —1/a, t, = —1/b, t = « and an irregular
at ¢ = 0. Following standard methods (Ref. 7,
pp. 168-174; Ref. 8, pp. 69-72) two normal solutions
around ¢ = 0 are obtained

i (t) ~ e 4 gt + g+ o),
Yu(l) ~ e A+ git + gl 4 ).

(3.14)

(3.15)
(3.16)
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Both expressions are asymptotic as { — 0. The
theory also assures that y;, ¥;; are twice differentiable
and that the asymptotic expansions for ¢, ¥y
(even for ¢4’, ¢¥}{) may be obtained by formal dif-
ferentiation of (3.15) and (3.16), respectively. Since
any solution y¥(f) of (3.14) is a linear combination
of y;and ¢y, expressions (3.15) and (3.16) in con-
nection with (3.13) show that

I[',/(t)! t]li-o = 01

if Rey> —1+ [Img¢|/2, 3.17)

and as long as ¢ approaches 0 along the real ¢ axis.
This statement serves to fix the path of integration I
in (3.9), thus making the integral expression a solu-
tion of the difference equation (3.5).

The roots of the indicial equations for the regular
singular points ¢, = —a ' and t, = —b ' are 0, 2
and 0, 0, respectively. There exist one solution ¢, (¢)
of Eq. (3.14) around ¢, = —a™ ' and another ¥,(f)
around {, = —b~', which, in the neighborhood of
the corresponding point and up to the nearest sing-
ularity can be expressed by the following convergent
series:

@) = (¢+ a7l +pt+a™)

+p+a D+ -1, (3.18)
‘/’2(1) =144 Q1(t + b_])
+ @@+ 07+ - (3.19)

Using (3.13) it may be verified that I(¥y, £) [(m_a-: =
Iy ) |im—s-» = 0. In combination with (3.17)
these results show that there exist two corresponding
solutions of (3.5) in the form

n@) = 5 [ #7w0 a (3.20)

w) = 55 [ #70) at, (3.21)
where the paths [, and [, are shown in Fig. 1. The
dotted lines represent the branch lines of ¢,(¢¥) and
¥(t). The paths may be deformed as long as they
do not cross branch lines and approach ¢ = 0 along
the real ¢ axis. The so defined solutions v,(y), v.(y)

-
~——
-

0 £ 1,0
t-Plane L2 | {-Plane

F1e. 1. Integration paths I, I, for vi(y), v(y).

* where s =
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are analytic for (Ref. 2, Chap. VIII, Ref. 10, pp.
478-501, Ref. 11, Chap. III),

Rey > —1 + [Im ¢|/2. (3.22)

It is shown later that they are also independent.
The third and fourth independent solutions of
(3.5) may be obtained by putting (Ref. 2, Chap. VIII)

v(y) = w(y)/T®). (3.23)

Substitution in (3.5) and multiplication by I'(y + 4)
yields a fourth-order linear difference equation for
w(y) with polynomial coefficients. The application
of Laplace’s transformation

I S ot

507 f; £ di

shows that ¥(f) must satisfy the differential equation
@& + DY) — (DY) + (D

w(y) =

X P8 — (@) + (¥(@®) =0,  (3.24)
where
() = (a + b)f® — 66 + 2at,
¢:(f) = —2abt' — (3a + 5b)¢
+ [&* + 6 — »(» + D)7, (3.25)

& () = —2abt*
+ [a + 3b — (a + b)(v + 1),
$o(t) = —abv(y + 1)t

In this case also (Ref. 10, pp. 478-501, Ref. 11,
Chap. III):

Iy, 1) = ¥() E L 1 (0]

2

- v Z; L 1™ g0(4)]

1

+ 970 ,,Z.E "™ (0]

= PO (). (3.26)

Equation (3.24) has three regular singular points
att =0, = 4, f, = —1, and an irregular singularity
at { = «. The roots of the indicial equation around
t =0arep=0,1, 2, 3. Four independent solutions
of (3.24) correspond to these roots and any solution
of it can be expressed as a linear combination of
them. These solutions have the general form

() = ) F L@ In s+ oo + f()(In "],

1,2, 3, 4;m < 3, and f,(t), +++ , (@)
are analytic at { = 0. Thus; if Re.y > 0, £'y,(2)
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vanishes at { = 0 for all ¢,(¢). Reference to (3.26)
shows that

if Rey>0, then I(, 8 io=0 (327

for any solution ¥(f) of (3.24). Under the same
condition (Re y > 0) [[(¢, £)]; = 0, where the path
starts and ends at ¢ = 0.

The roots of the indicial equations around £ = 2
andt, = —iare0,1,2, 8, = —ic/2,and 0, 1,2, 8, =
ic/2, respectively. As before two solutions y(f) and
¥s(t) of (3.24) exist, the first defined around ¢ = 7,
the second around ¢ = —¢, which can be expressed
by the convergent series

V() = (¢ =)7L+ @ —9)

+ h(t — )+ -], |E—1] <1, (3.28)
Yulf) = (¢ + D7 + 1t + 9
+ L+ + -], B+ <1 (3.29)

The remaining two independent solutions of (3.5)
can now be defined by

1

vs(y) = Il (@) . (3.30)

£7N(1) dt,

1 -1
=5 | 31
2) = grrg ). WO @ @3D
where I, and I, are shown in Fig. 2; they are analytic
for
Rey > 0. (3.32)

Four independent solutions of the fourth-order
linear difference equation (3.5) have been found:
v, and v, defined and analytic for Re y > —1 +
|Im ¢|/2; v5 and v, defined and analytic for Rey > 0.
For Re y < —1 + [Im ¢|/2 and Re y < O the
analytic continuation of vy, v, and v,, vy, respectively,
is defined by the difference equation (3.5), i.e.,

v.(y) = —[py.(y + 4) + p:Wv.(y + 3)
+ pa(y)o.y + 2) + 2av,(y + 1)];
s=1,23, 4. (3.33)

This definition makes all four solutions analytic in
the whole y plane.

Fira. 2. Integration paths Iy, I for vs(y), va(y).

G. FIKIORIS

As a next step these functions are expanded in
inverse factorial series and their behavior is in-
vestigated as y — o in the right-half-plane, from
now on indicated by y — | «. It is first observed
that forRey > y, (y, = —1 4 |Ime¢|/2fors =1, 2
and 0 for s = 3, 4), v, v, w;, W, can be expressed
in the general form

w) = 5y [ 70— )00

o (3.34)

where f,(t) is analytic at £ = ¢, but singular at { = 0.
The singularity at ¢ = 0 is regular for f;(f) and
f.(t), but irregular for f,(¢), f.(¢). In the first case
(s = 3, 4) it is a familiar fact of the theory of linear
difference equations (Ref. 2, Chap. VIII; Ref. 10,
pp. 485-487; Ref. 11, pp. 61-64) that, if a sufficiently
large positive number w is selected, u,(y), except
for a constant factor, can be expressed in the follow-
ing form:

o I'(y/w) .
us(y) - t, F(y/(l) + Ba + 1) Q( )(y)v (335)
where
2w =1+ X
n=1 .
% gn
(¥ + wB, + )y + B, + 2w (y + wB. + nw)
(3.36)

is an inverse factorial series convergent for Re y > y,.
It may be seen from Fig. 2 that the paths /;, [, can
be deformed into the circles |t — ¢| = 1and [t + 4] = 1,
respectively. As a result of this possibility it is
allowed to take in this case w = 1 (Ref. 10, pp.
485-487; Ref. 11, pp. 61-64). For additional details
Ref. 1 is cited. The above expansions, except for
a constant factor, are immediately applicable to
25.(y) = ws,(y)/T (W) withw = 1,4, = i = '™,
Bs. = TFic/2. The inverse factorial series @ (y),
Q“(y) converge uniformly for Re y > 0. Their
coefficients g, g!¥ can be obtained by standard
methods [starting from the integral representations
(3.30), (3.31), term-by-term integration, and use of
the integral representation of the beta function],
or by direct substitution into the difference equa-
tion (3.5) and application of the method of unde-
termined coefficients. They will be found explicitly
later using the former method. The analytic con-
tinuation for Re y < 0 is again provided by (3.23)
making v; and v, analytic throughout the y-plane,
From now on these definitions are adopted for vs, v,
instead of the original integral forms (3.30), (3.31).
They are constant multiples of the latter.
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When ¢ = 0 is an irregular singular point of f,(t)
in (3.34), convergent expansions of the form (3.35)
and (3.36) can not, in general, be obtained. How-
ever, with w = 1 these expressions provide at least
an asymptotic expansion for u,(y) as y — « in
the sector — 37 + e < argy < 37 — e (e > 0O
and arbitrarily small) (Ref. 2, pp. 309-318; Ref. 3,
pp. 70-74; Ref. 10, pp. 457-459; Ref. 12), Therefore,
except for a constant factor, the following relations
are valid

P S A i) () B
“@‘< )y@+nw+w

(3.37)

(1) 1)

QM ~ 1 G [
v il Y )

+ .-,

(2)

g1
~ 1 -
+y+l

(2)

[P}

+(y+1)(y+2)+
The above expressions hold in the sector —ir +
e < argy < ir — e The coefficients g{”, s = 1, 2
can be determined by both methods mentioned
previously, the only difference being that the process
is now at least formal. As is seen in the following
it is not necessary to find them explicitly.

The linear independence of the so obtained solu-
tions v,, v,, vs, v, can be demonstrated by referring
to Noérlund’s theorem (Ref. 3, pp. 70-74; Ref. 12;
Ref. 1) or by making use of a general theorem given
in Ref. 10 (p. 360), based upon the behavior of the
solutions »,(y) as ¥ — | =, which is now known.

For v;, v, two convergent and for »,, v, two at
least asymptotic expansions have been obtained in
terms of inverse factorial series valid in a half-plane
limited to the left. It is a fact of the theory of linear
difference equations that when |y| is large (without
any limitation to the left), the corresponding expan-
sions Q’(y), though not necessarily convergent any
more, are in any case developable asymptotically
in series of the same form (Ref. 2, pp. 309-319;
Ref. 10, pp. 457-459; Ref. 1). Thus, it is possible
to write

Q(Z)(y)

y—joo

(3.38)

(1Y 1w
0 = (= 3)

v (y) = (~ %) ﬁy_f@

2 N. -E. Nérlund, Acta Math, 34, 16 (1911).

(3.39)
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_ ,L'yﬂ(fi)(y) ]
w0 = TG+ 1~ i0/2) (3.40)
_ (=02
"W = T 1T e/
where
lim ¢(y) = 0, s=1,2, (3.41)
ly|—=e
Q(')(y) ~ 1 + gl(’) ‘
lyi—e y+1Fic/2
g;a)
+ (y + 1 F i6/2)(y + 2 F ic/2)
+ ey, s=3’4; (3.42)

the upper sign should be used for s = 3, the lower
for s = 4.

Asymptotic Expansions of R(z), Ry(2)

The results of the preceding sections and Ford’s
theorems I and VI (Ref. 2, Chaps. I and VI, respec-
tively; Ref. 1) can now be applied to yield the asymp-
totic expansions of R,(z), R.(z). For the latter func-
tion, the procedure applies only when 2» 4 1 differs
from an integer. As stated by Eqs. (3.7), (3.8), the
particular solution #(y) of (3.5) is sought that
satisfies the conditions

(n + o) = a, for all integers n
(or=v+ 1,0, = —»). (3.43)

In terms of the four independent solutions of the
fourth-order difference equation (3.5), defined in the
preceding section,

3(y) = Av,(y) + Bv:(y) + Cuvs(y) + Du(y), (3.44)

where A, B, C, D are constants. The connection
between (3.5) and the recurrence formula (2.5) for
the a,’s shows immediately that the four initial
conditions

H{—3+0)=0, 5(—-2+9) =0,
7o) =1

(—1+0) =0,
(3.45)

[or, for that matter, any four such relations ob-
tained from (3.43) for different but arbitrary values
of n] are enough for the satisfaction of (3.43) for
all n. These conditions serve to determine the co-
efficients A, B, C, D of the linear combination (3.44).
Deferring this matter for the moment it is possible
to express the series

(¢ =0, oOr o)

R.@2) =2 2 a7
n=0

=2’ 277(77' +o)e, =v+ 1,0, = —v)

n=0
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as follows:

—_— L @ __z n
R,,(z) = A(—a_) g Gx(")(?)

> (7

+5(5) &
+ 06 X Gl
+ D T G-, (340

where G,(n) = v,(n + )/, 8, = —a ', t, = ~b7",

ts = i, t, = —i. In other words G,(n), when con-
sidered as functions of w = z + 7y, are given by
1+ w + o)

G0 = o dw T o+ Dt o T
lim ¢(w+0) =0 (3.47)
jw| e

_1ltewt o,

Gz(w) - w + o )

lim w4+ o) =0  (3.48)

fwe|—ow®

Gw) = 29w + )T + o + 1 — ic/2)]

(3)

(3) ~ Gh
@ (w+a)|w|~m1+w+a+1——ic/2

— . + o) + De — e/, =is —u/zl:l + Z

~ ZT)(-‘ 0) + Ce —re/ayiz 1;/2[1 + 2“’: (3)]
Z o & (’L n |

FIKIORIS

(3)

g
(w+<r+l —w/2)(w+a+2——w/2)

(3.49)
Gi(w) = QYw + o)[Tw + o + 1 + i¢/2)]™"

(4)

[/
1'{bw-l—a-i—l—l-zG/2
gé‘i)

(w+o'+ 1 —|—w/2)(w+<r+2+zc/2)

Q(4)(w + 0_)

few]—e

(3.50)

The functions G,(w) are analytic for all finite w just
as the functions v,(w + ¢) are. For Re w > —o
the expansions for @ and Q' are convergent
series. The above expressions show that G,(w) and
G, (w) satisfy all the conditions of Ford’s theorem I
(subject to certain remarks and generalizations),
while G5(w) and G, (w) satisfy all the conditions of
Ford’s theorem VI (Ref. 2, Chaps I and VI; Ref. 1).
Application of the ratio test to the four power series
in (3.46) reveals that the first converges for |2| < |a,
the second for |2| < [b], while the last two are entire
functions. For large z the first two series can be
expanded asymptotically using Theorem I, the last
two by using Theorem VI. The process is straight-
forward and details will be omitted. They can be
found in Ref. 1, or, for a different example, in
Chapter VIII of Ref. 2. Withz = |z| ¢, —r < ¢ < =
the final result is

(4)

n |y 0
n=](—)] <¢<7r

—7<¢ <0

© © (3)
N_ZVZ(n+¢7')+c-—1rc/4:c/2[1+zgn]

n=1 2

© (4)
+ De—wc/ée—izz—iC/Q[l + Gn },

Since #(—n + ¢) = a_, =0 (n =1,2,3, ---)
the first term in all three expansions drops out.
It is understood that ¢, = » -+ 1 must be used
for R,(z), o, = —v for R.(z), when 2y + 1 differs
from an integer. For large |z| the branch lines starting
from z = —a and z = —b, for both R, and R,,
are drawn along ¢ = . This ray is excluded from
the above expansions. Finally the problem is com-
pleted by evaluating explicitly the coefficients g&®
and g¥. Two standard methods have been outlined
in the previous section [following Eq. (3.36)] and
the first has been carried out in detail elsewhere

a1 (12"

¢ = 0. (3.51)

= (—)”

(Ref. 1; see also Ref. 10, Chap. XV and Ref. 11,
Chap. III), yielding four-term recurrence formulas
for these coefficients. Omitting details the final re-
sults are

'g Tu(n)gsln = 9" = 1;

¢ =0G=1,2, --4); s = 3,4, (3.52)
To(n) = +2in, (3.53)
Tim) = Filn — 1 F 1¢/2)[n F %i(5a + 3b)]

+ ¢(1 F i) = (v + 1), (3.54)



SOLUTIONS OF DIFFERENTIAL EQUATIONS

T,m) = (a + b)(n — 2 F i0/2)* + 2b(1 F a)

X n—2Fic/2) — (a+ b+ 1), (3.55)
Ts(n) = +iab(n — 3 — v F 1¢/2)

X (n — 2 + v F ic/2), (3.56)

where in the last four expressions the upper sign
is used for s = 3, the lower for s = 4. Obviously,

for real a, b
4 ~(3)
n

g =g (real a, b). (3.57)

It remains to identify the asymptotic series in
(3.51) with the expansions (2.30) for R; and R,
that have already been obtained independently. This
can be done without difficulty, for example by
evaluating
gi* = —T\(1)/To(D) = ifje

+ [(Fic/2) (A F ic/2) — v(v + 1) — cb)(£26)7'}.
It is then obvious that the corresponding expansions
in (3.51) are simply Ce™ ***R;(z) and De™"**R,(z).
Summarizing, it may be stated that in an entirely
independent manner the required expansions

R.@) ~ ARG, 0<¢<m,
~ A3R3(z), - < ¢ < 0,
~ ARy + AR.(), ¢ =0, (3.58)

where

A, = De” ™, A, = Ce ™, (3.59)

have been arrived at, in complete agreement with
the results of the preceding section. At the same
time, explicit relations have been obtained for the
precise evaluation of the coefficients of the linear
relations. This evaluation is carried out in the next
section.

A final remark may be added, based on (3.57).
For real a, b, z : R:(z) = R.(z), in agreement with
(2.32), while R,(z), R.(z) are real functions. There-
fore A; = A, [from (3.58) and for¢ = 0], or C = D
for real a, b.

4. DETERMINATION OF THE COEFFICIENTS
OF THE LINEAR RELATIONS

The Multipliers of v,(y)

In view of (3.59), only C and D must be de-
termined. Four linear equations are obtained for
A, B, C, D if (3.44) is substituted into the four
relations (3.45). Their solutions can be written

A=p"@>—3), B=u"6 -3,
C =u"c—3), D=u"0-23),

(4.1)
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where u{*(y) (s = 1, 2, 3, 4) are the cofactors

of the last row of the determinant P(y) divided

by P(y) and where

v4(y)

vy + 1

vy + 2)

vy + 3)
4.2)

is Casorati’s determinant (Ref. 10, Chap. XII;
Ref. 11, Chap. I) for the four particular solutions
v.(y) (8 = 1, 2, 3, 4) of (3.5). It satisfies the first-
order difference equation (Heymann’s theorem)

P@y+1)
P(y)

va(y)

vy + 1)
vs(y + 2)
vs(y + 3)

2:(y) v2(y)

ny + 1) vy +1)
ny +2) wny+2
n(y +3) vy + 3)

P(y) =

_ o) _ 1
p:y) ably+3—-—»y+4+y
(4.3)

whose solution is given by (Ref. 10, pp. 327-328)

(1Y w(y) :
PG = (ab) Ty +3 —»I(y + 4+ )’

w(y) is, in general, an arbitrary periodic function
of y with period 1. For the particular solutions
v,(y) (s = 1, 2, 3, 4), whose explicit behavior is
known as y — | =, the corresponding w(y) can be
determined. Thus letting y — | «, substituting
(3.37), (3.38), (3.40), and (3.42) in (4.2), and making
use of the relation (Ref. 2, Chap. VIII; Ref. 10,
pp. 254-255)

F(y + 7') T—p
T+ 0) o’

—7m+e< arg y <7 —e¢

“.4)

(4.5)

it can be found' that w(y) = 2ic/(ab)?, i.e., a con-
stant. Therefore
_ -1— >v+3 21: ¢
P = <ab Ty +3 - ATy + 4+
It is now convenient to introduce the so-called

multipliers N,(y) (s = 1, 2, 3, 4) of the solutions
v,(y) of (3.5) (Ref. 10, pp. 372-374):

N = u®@ + 1)/p.@)
= u @ + DPy + 1)/PQ),

where po(y) = 1 was used in writing the second
expression. From their definition it is always pos-
sible to write them in determinantal form. With
po(y) = 1 they are simply the negatives of the
cofactors of the first row of P(y) divided by P(y).
Using (4.7) in (4.1) it is possible to express A, B, C, D

(4.6)

4.7
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as follows:
A N l(y)
= by +3 -+ 4400 .,
C Ny(y)
D N 4(?/)

4.8)

where ¢ = » + 1 is used for the expansion of R,(z),
o = —y for that of R,(z).

The behavior of N,(y) as y — | « ecan also be
found as was done for P(y):

v+3

—a
Nl(y)y:m . Y
o ="
N ~ S0 (4.9)

Naoy) ~ —3(FO)'Tly + 3 — »)y 7"

~ —%(:Fz)”I'(y + 4 + y)y—u—:s?ic/z‘

The two expansions given for N, N, are asymp-
totically equivalent, as may be shown with the use
of (4.5).

(4.10)

The Adjoint Difference Equation

It is a well-known fact that the multipliers N,(y)
are independent solutions of the difference equation
adjoint to (3.5), i.e., they satisfy (Ref. 10, pp.
372-374; T.ef. 11, Chap. I)

ipm(y+4~m)N(y+4—m) = 0,

J. G. FIKIORIS

Direct application of Laplace’s transformation to
this equation yields two solutions proportional to
N,(y) and N,(y), as may be seen by comparing
their asymptotic behavior as y — | « with (4.9).
In order to determine N,(y) and N,(y) put

N@) = Ty + 4+ »)M(y),
to obtain the difference equation

QMY +4) + QMY + 3) + WMy + 2)

(4.11)

+ WMy + 1) + QM(y) =0, (4.12)
where
Q) = pusy + 9 TUELELED,
§=0,1,2,34  (4.13)

The equation can be solved by application of La-
place’s transformation; the integral representations,
defining analytic functions in a certain right half-
plane, are then expanded into inverse factorial
series, asymptotic for y — | «, as was outlined
previously for »;(y), v4(y); proportionality factors
can be determined comparing with (4.10); the con-
tinuation of these solutions to the left is provided
by the difference equation itself, resulting in N;(y),
N,(y) having simple poles at

y=v—3—n and y= —v —4 — n,
n=012 . (4.14)

Details, omitted here, can be found in Ref. 1. The
final results for the asymptotic expansions follow:

m=0

, _ _(F) T+ 4+ 9T -
Ah(y) - 2 I‘(y _|__ v + 3 q: 7/(,'/2) T(y)v (410)
Ty) =1+ Z + __d; e (4.16)

y+rv+38Fic/2 (y+v+3Fic/2Qy+ 4+ v F ic/2)

Recurrence formula for the coefficients d,:

1 6 . — . J— — Lrd
d” = % m=1 Tm(x)dn-m) dO = 17 d"i - 0’ ] = 1‘ 2’ 3' ! (41‘)

z=n-+vFic/2,
(@) = 112° — (140 + 17 F i(7a — 3z + 4° + & — ac F i(dar + 3¢),
ro(2) = —252° + [3% + 102 F i(3b — 17a)]z> — [18&° + 81v + 89 + ab — 3a® = (96 — a(16r + 39))Ix
+ 2° + 10° + (12 — a® — aby — 3ac F ¢[(3a + b)y® + (11a + by + 3c],
ro(@) = 2{302° — [56v -+ 228 == i(b ~— 190)]2® + [3(11* + 85 + 172 — ¢?) = 2(@3b — a(12 + 50)le
— 6" — 65° 1+ (2a° — 245) + 9a® — 330 == §[(Ta + Bp® + (55a + by + 108a — 8b]},
1@ = 2@ — Dz — » — 5)[—202° + (24 + 122 F 510a)z + a* — T* — 67v — 174 & i2a(3 + 16)],
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75(2) = z(x — Diz — 2z — v — 6)(x — v — 5)(Tx — v — 25 * 24a),

1e(2) =

—z(z — Dz — 2@ ~ 3z —v — D —» — 6@ —v — 5).

(4.18)

Throughout the above relations the upper sign is used for N,(y), the lower for N;(y).

Different but equivalent expansions for N(y), Ns(y) can be found by employing Boole’s operational
method for solving difference equations with rational coefficients, as explained in Ref. 8, pp. 434-461.
It is essentially the method of undetermined coefficients, completely analogous to the method of Frobenius

for differential equations, The final results are

v _ (=) T+ 4T3 =)
Nqa(y) - 2 I'(y + 6 x i0/2) 1(2/): (4-19)
T) =14+ — d; .20
y+6Fic/2 (y+6Fi/y+7F zc/2)
Recurrence formula for the coefficients d,:
5
= -1; E Qrmfs-m(2); dy = 1; d.; =0, i=12,3 (421)

x=2—yp—ntic/2

fol@) =2z — D@ — 2z + 2+ Dz + )@+ 2 — 1),

h) =2z — D~ D@+ )+ 2 — DBz + 3 — 3 F i),

L@ = @ — 2@ + 2 — D[142® + 40T — 10 F 20z + 12 — 42 + 30 — a® F ida@ — 3)],

fs(x) = 162° + [48 — 90 F i(1le — B)l”

+ 220" — 94y + 85 — o F W((lle — B — 2) + Yz

+ 8 — 84" 4+ (184 — 2a*) + 4a® — 108 F i[8aw” + (7b — 47a)y + 44a — 8b],

fi(@) = 92° + [18& — 39 F i2(3a — )]z + &° — 400 + 42 — ac F i[2(8a — by + Tb — 15a].

The sign convention is the same.

The inverse factorial series in all these expressions
are at least asymptotic for large |y|. It is also obvious
that for real a, b : d¥ = d“. Then N.(y) = N.(),
or for real y: N3(y) = N,(y). From (4.8) it may be
seen that in this case ¢ = D, for both B, and R,,
a fact that was inferred previously, Egq. (3.60),
through different considerations.

C and D may now be evaluated using (4.8),
withy =¢ —4 =y~ 3forBy(®)andy = —» — 4
for R.(z), when, in the latter case, 2» + 1 differs
from an integer. In general, the expansions given
will not be useful for direct evaluation of N(» — 3)
and N(—» — 4). However, N,(y) and N;(y) may
be evaluated at v, ¥ + 1, v + 2, y + 3 with an
adequately large y and then the difference equation
satisfied by N(y) can be used to obtain N{y — 1),
Ny — 2), ete,, up to N — 3) and N(—» — 4).

(4.22)

All these considerations can be expressed in a more
compact and general form, which will also prove
advantageous in the next section, where the special
case of integral values for 2v - 1 is investigated.

Starting from (4.2), the definition of Casorati’s
determinant, multiply the first, second, third, and
fourth columns by A4, B, C, D, respectively, add
columns, use the sum as the new fourth column
and make use of (3.44) to obtain

D = P,(y)/P(y), (4.23)

where P,(y) is Casorati’s determinant for the set
of solutions v,, v,, v;, 7 of the difference equation (3.5).
Thus D is equal to the constant ratio of two
Casorati’s determinants of this equation, differing
only in their last column. Development of P (y) with
respect to its last column yields
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ni(y) v:(y) v3(y) n(y) v2(y) v3(y)
D =" g+ e+ ww+ 0 - ED G+ we+ D we+ D
vy +2) vy +2) vsly+2) n(y +3) vy +3) vy + 3)
v:(y) v:(y) v5(y) n(y + 1) vwly+1) uny+1)
+ AL+ ne+ D w+2) - BB G+ D we+D we ). @20
n(y +3) vy +3) wly+3) vy + 3) vy +3) wy + 3)

Call (a), (b), (c), (d) the four terms of this equation.
Recall the definition of N,(y) as the minor of the
upper left element of P(y) divided by P(y) and use
P(y 4+ 1) = P(y)/ps(y) to obtain

(@) = [y + 3)/PWIPQy — DN,y — 1)
=8y + 3ply — DNy — 1),  (4.25)
(@) = —d@mN.®). (4.26)
For (b) substitute the elements of the last row by
v.(y +3) = —[psy — Doy + 2)
+ p(y — Doy + 1) + 2a0.(y)
+ 0.y — Dl/puly — 1);

2, 3 and break it up into four determinants with
the same upper two rows, as in (b), and with last
rows containing each of the four terms in the above
expansion, respectively. The second and third of
these determinants vanish having two proportional
rows. The remaining terms lead to

®) =9y + 2)ps(y — DN.(y — 1)

+ 3y + 2)ply — 2Ny — 2).  (4.27)
Treating the elements of the first row in (¢) in a
similar way yields

(© = —5(y + DN,y + 1) — 2ai(y + 1)N.().
(4.28)

s =1,

Substitution in (4.24) finally yields
D =5(y+2)p.(y — 2)N(y — 2) + [0(y + 3)pa(y — 1)
+ 9y + 2)ps(y — DING — 1) — (@)

+ 2ai(y + 1)INL(y) — 9y + Ny + D).

For y = n 4+ o and the relation #(n + o) = a,
for any integer n, the last expression reduces to

D=g,,:p;s(n—240)N,(n—2+40a)+[a,.sps(n—140)
+ a,,+2p3(n —1 + U)]N4(n -1 + 0')

— [a.+ 2a @, JNy(n + o) — a,.:N(n + 1 4 o).
(4.30)

(4.29)

For an appropriately large value of n, the four values
of N,(y) appearing in (4.30) can be evaluated from
the asymptotic expansions given previously. The
computations are checked automatically if more
than one value of n, not necessarily consecutive,
are used, the result being independent of n.. At the
same time the accuracy of evaluation is revealed.
Forn = —3: D = p,(c — 4)N,(oc — 4) is obtained,
as in (4.8). C is given by the same equation (4.30),
if N;(y) is substituted in place of N,(y).

5. THE LOGARITHMIC SOLUTION:
2y + 1 = INTEGER
Asymptotic Expansion of R,(z) for Large |z|

For the coefficients B,, of the logarithmic solution
R,(z) the recurrence formula (2.23) has been ob-
tained in Sec. 2. The initial conditions are given
by (2.21). An equivalent set is

By=0, B.,=bid:,, B_;=byds_1, B_3=Dbeds s,

(5.1)

where by, ds,, ds,—1, d2,-» are definite numbers ob-
tained in Sec. 2. Now write m + 4 for m in (2.23)
and replace a,, by #(m 4+ » 4 1). Next introduce
in place of m 4+ » + 1 the general variable ¥ and
in place of B,, the function »(y) such that

vim + v + 1) = B, = byyirim
for all integral values of m. (5.2)
As a result (2.23) assumes the form
Pav(y + 4) + Py + 3) + plyhv(y + 2)
+ 2@y + 1) + pWr®) = @)y + 4)
+ a3y + 3) + ¢ )iy + 2), (5.3)

where the right-hand side is identical with (3.5),
(3.6), while

:(y) = Foly + 4) = —ab(2(y + 4) — 1]
= —dp.(y)/dy,
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() = F,(y + 3) = —2(a + b)(y + 3)

+ 2b = —dps(y)/dy,
) = Fa(y + 2) = =2y — 3 = —dp.(y)/dy.

The last expressions for ¢,(y) may be obtained from
(3.6) by differentiation. #(y), in the right-hand side,
is given by (3.44) as the particular selution of (3.5)
which corresponds to R,(z) and which satisfies
in 4+ » 4+ 1) = a,; it has been determined in
Secs. 3 and 4. ’

The corresponding to this case difference equation
turns out to be an inhomogeneous equation, whose
homogeneous part is identical with (3.5). The par-
ticular solution »,(y) of this equation is sought,
which satisfies the conditions (5.2), in which B,, may
be considered as definite, given constants. As before
for R,, just four of these conditions are sufficient.
The general solution of (5.3) consists of the general
solution of the homogeneous equation plus a par-
ticular solution v5(y) of the inhomogeneous equation
(Ref. 10, Chap. XII), i.e.,

v:(y) = Evi(y) + Foa(y) + Gos(y) + Hva(y)
+ v(y) = V(y) + vsy),

where v,(y) (s = 1, 2, 3, 4) are the four particular
solutions of (3.5) corresponding to R,(z) and de-
termined in Sec. 3, while E, F, G, H are constants,
which will be determined so that four of the initial
conditions (5.2) are satisfied. Now write #(y) for
v(y) in (3.5) and differentiate the equation with
respect to y. Making use of (5.4) and the relations
dp,(y)/dy = dpo(y)/dy = 0 it can be seen that a
particular solution of (5.3) is

(5.4)

(5.5)

- Sw_(y_). _ dvl(y) dvz(y)
v5(y) = dy =A dy +B 2y

dv,(y) dva(y)
+cl+ DBl (56
where A, B, C, D are the definite constants cor-
responding to R,(z) with ¢ = » 4+ 1 and obtained
in Sec. 4. A complete solution of (5.3) has thus been
found.

The asymptotic expansion of R.(z) for large ||
is obtained as before, for R,, by making use of
Theorems I and VI. From its definition (2.25) and
the preceding expressions (5.2) and (5.5), R.(z) can
be put in the form

Ry(®) = 277 22 b.2" + w(®) + w.(2),

n=0

iz| < min (|a], |b)), 5.7
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where

©

w@ = (n22*" Do + v+ D

n=

+ 2! i vsin + v 4+ D2*, (5.8)
U(z) = 2" i Vin+ v+ D" =2""!
X 3 B+ v+ 1) + Foatn + v + 1)
+ Guln+ v+ 1) + Huw + v + DI, (5.9)

For large |z| the asymptotic expansion of u.(z) is
obtained in exactly the same manner as for R,(2)
with ¢ = » 4+ 1. Thus, as in (3.51)

uz(Z) ~ _zv+1 2 Ztn_::_Ll)

n=]1

+ He™"*R,(2), 0<¢ <,

_ g i V(—n j v+ 1)

+ Ge™""Ry(2), -7 <¢ <0,
_z,ﬂf:lV(—n;t»H) |

+ ¢ " [GRy() + HR.()], ¢ =0, (5.10)

where the bracketed series expansions in (3.51) have
been identified with e**2**/’R, 5(z).

Next consider u,(z). By making use of (5.6) it
can be put in the form

where
W, o) = = 3o + 7,
lz| < min (la, [b]).  (5.12)

In fact the part u,(z) in R,, in the form shown by
(5.11), could be written down from the start, if,
in order to obtain the logarithmic solution RE,, the
general method of Frobenius had been followed, as
applied in this special case and explained in Ref. 7
(pp. 396—404). The asymptotic expansion of u;(z, o)
for large [z] can be written down in exactly the
same manner as for R,(z) and u,(z), using o as a
variable parameter
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<

—z Z (_n"‘l— 0')

z2

us(z, 6) ~

lz}—eo

+ De”""*R,(2), 0<¢ <,

~ —Z’ 2 27(—_7;n+ U)

Jzl—c0

+ Ce™ " "R,(2), —r < ¢ <0,

~ — gﬁ—izi‘_”_)

lzl—e

+ ¢ (CR() + DR@L, ¢ =0. (513

The parameter o varies around the root v + 1 of the
indicial equation about z = 0 of Eq. (2.4). In (5.12),
the function u3(z, ¢) is defined for [z| < min (|a], |b]),
by a uniformly convergent series of analytic fune-
tions of ¢ [#(y) was proved to be analytic for all
y and 2° is an analytic function of ¢] and can, there-
fore, be differentiated any number of times with
respect to ¢ (Ref. 11, p. 400). On the other hand,
in the asymptotic expansion (5.13) the dependence
of us(z, o) on o appears (for z in any sector) only
in the series

n=1 z
Each term of this series is an analytic function of «;
in particular, for ¢ = v + 1. 5(—n + v + 1) =
G, =0(m =12, --.), 1ie., each term of the series
vanishes. Then, with ¢ varying in the vieinity of
» 4+ 1 and for sufficiently large |2/,

it o)

n=1 4
is a uniformly convergent series of analytic functions
of o. Therefore, differentiation with respect to o any
number of times is again permissible. Based on these
remarks the asymptotic expansion of duz/dc may
be obtained by differentiation of (5.13)

3u3(z, 0') _ T - 5(—_”’ + 0')
BaTy— ~. (Inz) 2 n; P
_pnBental s cn (1)

o o(—n+ o) 2

Letting ¢ = » -+ 1, use (5.11), (5.6), and #(—n +
yr+1)=0(m=1,2, ---) to obtain
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wm@) ~ =2 zm: ot v+ 1) —:nv + 1).

lz]l—e n=1

(5.15)

This result can be combined with the first term of
u2(2) in (5.10); in connection with (5.5) and (5.2)
the combination yields

_g ivi(_n + v+ 1) —— Z |
e m

n=1 n=1 Z
2v+1 b
— _Zy+1 Z —-n+ﬂ2!+l,
n=1 2
where b_, = b, = --- = 0 was used to reduce

the series into a finite sum. Change of the summation
index, n = 2» + 1 — m, yields

m=0 b 2y

m=2v 2 m=0
and this exactly cancels the finite sum in (5.7),

which, of course, remains unchanged for large [z].
Therefore

R,(5) ~ AuR.(2), 0<o<m,
fgl—ow
ARy, -7 < ¢ <0,
AxRs(2) + Ali(), ¢ =0, (5.16)
where
A24 — He--rc/4, A23 — Ge_”“. (5.17)

The result is in agreement with theory (Ref. 7,
pp. 168-174; Ref. 8, pp. 72-73) and analogous to
the result for RB,(2).

Determination of the Coefficients G, H

Following the steps that led from Casorati’s de-
terminant (4.2) to expression (4.23) for D, it is
possible to obtain a similar expression for H by
making use of the equation

v.(y) — ¥ (y) = Ev(y) + Fos(y)
+ Gus(y) + Hv(y). (5.18)

It follows that H = P,(y)/P(y), where P,(y) is
Casorati’s determinant for the set of solutions v,, v,,
vs, v; — ¥ of the difference equation (3.5). Moreover
the procedure that led from (4.23) to (4.29) shows
that H may be expressed as follows

H=py+2 -9+ Dlply — DNy — 2) + {[v:{y + 3) — 7y + 3lpsly — 1)
+ by +2) — 0y + Dlpaly — DNy — 1) — {o:(y) — 7 () + 2afply + 1)

— ¥y + DN — by + D — 7@ + DIV + 1.

(5.19)
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Differentiation of (4.29) with respect to y followed by addition with (5.19) yields
H =y + 2ply — 2Ny — 2) + bily + 3paly — D) + 0:(y + 2pay — DIV — 1)
= @) + 2av:(y + DINLG) — vily + DNy + 1) + 3y + 2)(@/dypsly — 2Ny — 2)]
+ 3y + 3)(d/dy)[p.ly — DNy — D] + 3y + 2){d/dy)[ps(y — DNy — D]
— [b(y) + 2a(y + DIAN.(@)/dy] — 9y + D[Ny + 1)/dy].
Finally sety = n +» + land usev;(n +» + 1) = B,, 9(n + » + 1) = a, to obtain
H = [Boopsn +v — 1) + a,.:pi(n + v — DIN@ + v — 1) + [Borsps(n + v) + Booaps(n + v)
+ Pl + 9) + ueapin + 9)IN +5) — [By + 2aB,INn +» + 1) — BouN(m +v + 2)
+ Gupsln + v — DN + v — 1) + [@aesps(n + ) + Gueopsin + )N + »)
= [a. + 220, Niln +» + 1) — a...Niln + v + 2).

Exactly the same expression gives G, if N;(y) is substituted in place of N,(y).
An expression for N’ (y), at least asymptotic for y — | =, can be found by direct differentiation of (4.15),
(4.16), or (4.19), (4.20) (Ref. 10, pp. 434-461 and 457-459). The corresponding results are

Ty +»+ 9T
I'(y +» + 3 F %ic0)

do(y + v + 5 F 3io)

(5.20)

(5.21)

Ni() = [£3r + ¥y + v + 9 + v@)INL@E) + 3 (E)”

diyly + v+ 4 F 3ic)

X[!l/(y+v+3:F%ic)+

y+»+ 3F Lic +(y+v+3:F%ic)(y+u+4:F%ic)+ ]
(5.22)
. wy I Hyr 3 —
NLW) = lkin + ¥+ 0+ D 9+ 8~ AN + e DUE2 LIS =)
oy 4 Gy + 7 F o) doy(y + 8 F o) ]
X [¢(y+6¥%“)+ yt6Fhe TwreFhowtTFg T L OB

where ¥(z) = IV(2)/T(2), ¥(z + 1) = ¢¥(z) + 1/z and ¥(1) = —v = Euler’s constant.

It may be seen from the above results that for real a, b : G = H. H(G) have been expressed in terms
of N,, Ni (N5, N}) only, just as D(C) were found in terms of N, (N,). The remarks following (4.30) and
concerning the computation of C, D apply to the numerical evaluation of G, H as well. For large n, T'(z)
and ¥(z) are easily evaluated with the use of their well-known asymptotic expansions

L 1 1 139 571 163879 5246819
o b 1 _ _ .
T@) ~ e72""(2m) [1 T 1oz T 2887 T 518407 ~ 2488320z° | 20001888302° T 752467968002° ]
(5.24)
11 11 11 691 1 -
V@) ~ Iz — o~ o2t o0~ e T 34057 T 13350 T 3360 " i2e" T (5.25)

Even for z = 2, the second series yields ¢(2) with
an accuracy of six decimals, while the same is true
for I'(z) and z = 3.

Notice, however, that n cannot be given very
large values in (4.30), (5.21). Since a,’s and B,’s
are involved in these relations and the accuracy
of their evaluation diminishes as n increases, there
is a limitation to the values of n that can be used.
It was also observed that for large n the summation
of the terms in the right-hand sides of (4.30) and
(5.21) destroyed the accuracy rapidly by eliminating

the first significant decimals of the individual terms.
In each particular case, i.e., for given values of a, b,
there is an optimum range of values of n for which
(4.30) and (5.21), with a given accuracy of computa-
tion, yield the most accurate results. Additional
remarks regarding the numerical evaluation of C, D,
@, H, as well as of the functions B,, R,, Ri;, R,
can be found in Ref. 6.

As an indication, a few results are given, obtained
with eight-decimal machine computations for the

special case a = 12,b = 10,¢ = 2,C = D, G = H,
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» D H
1 4.14617 — 74.06427 —252.508 — 7265.563
3 —133.193 -+ 7117.365 898.741 4 11306.918
5 (1.24526 (—0.875955
— $0.965800) X 10¢ — 14.30989) X 10¢
7 {—2.32660 {—2.05026
+ $1.5730) X 106 + 13.83348) X 10
9 (7.2577 — 74.2497) X 108 10.0441
— ©7.42212) X 108
Ry(z) from
¥ z convergent series Ry(z) from (5.16)
1 12 38.0483 38.1064
14 114,081 114.082
3 12 —327.000 —326.902
14 —401.884 —401 .875
5 12 1.46444 X 10¢ 1.46278 X 10*
14 7.44758 X 108 7.44795 X 108
7 12 —1.95279 X 10¢ —1.95571 X 10¢
14 —2.95473 X. 108 —2.95481 X 10°
9 12 4 80712 X 10¢ 4 80351 X 108
14 —3.75249 X 108 —3.75230 X 108,

Riy(z) = R.(x). Besides D and H, the values of R,(x)
forz = 12and 2 = 14 aregivenforvr =1,3,5,7, 9.

J. G. FIKIORIS

These values of z fall in the overlapping region
between the asymptotic series (5.16) for R, and a
convergent series obtained with the use of the trans-
formation (2.26). Both values of R, are given for
comparison. R, is not given, since it is included in
(2.25), defining R,.

For z = 14, falling roughly in the middle of the
overlapping region in this case, the agreement is
good up to five significant decimals.
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We define and discuss equations on Banach rings (algebras) which are of polynomial form. We
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theorem for the nonhomogeneous case. In order to apply these results to the equations of Lagrangian
quantum field theory we find it necessary to extend the concept of a ring to that of an n-ring. The
resulting theory is applied to a simple model equation arising in quantum field theory.

1. INTRODUCTION

ONLINEAR problems are of great interest in
theoretical physics. In particular the equations
of quantum field theory and general relativity are
highly nonlinear. The typical system of nonlinear
equations is between a set of elements forming a
linear space over the complex numbers. The non-
linearity in the system of equations allows a mul-
tiplication to be introduced in the linear space, so
* The research reported in this document has been spon-
sored in part by the Air Force Office of Scientific Research,
OAR, under Grant No. AF EOAR 63-79 with the European
Office of Aerospace Research, U. 8. Air Force.
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turning the space into a ring.' The system of equa-
tions involves N elements (where N may be infinite),
and is often in the form of the vanishing of a set
of N polynomials in the N elements. The degree
of these polynomials has a finite upper bound M.
We call such a system of equations a polynomial
system. Polynomial systems arise, for example, in
Lagrangian quantum field theory.? Here N is in-
finite, corresponding to the fact that there is no
upper bound on the number of particles existing

1 'We are using the terminology of M. A. Naimark Normed
Rings (P. Noordhoff Ltd., Groningen, The Netherlands,
1959), English transl.

% This is discussed in more detail in papers by this author
in Nuovoe Cimento Suppl. 1, 857 (1963).
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at any one time. A is the degree of the interaction
in the Lagrangian. The elements of interest are S-
matrix elements for different numbers of particles,
and the nonlinearity is that obtained by multiplying
together two S-matrix elements and integrating over
a certain number of the particle momenta. A similar
type of equation arises in the bootstrap approach
to elementary particles, with both M and N finite.

The homogeneous equations (involving no fixed
elements of the ring), have been discussed recently
from the viewpoint of representation theory for
commutative rings.® We wish to discuss here the
more general case of not necessarily homogeneous
polynomial systems in a not necessarily commutative
ring. The equations we are considering are not ex-
pected to have an exact solution, so we must set
up approximation procedures to solve them. The
questions which we need to answer before doing this
are: (a) do the equations have a solution? (b) if so,
is this solution unique?

In this paper we want to give answers to these
questions for a certain class of polynomial systems
on a normed ring.' We first give a precise definition
of polynomial systems in the next section. We then
show, in the third section, that for homogeneous
polynomial systems solutions arbitrarily close to zero
cannot occur. In the corresponding nonhomogeneous
case we show in the fourth section that at least
one nontrivial solution will oceur. These results may
be applied directly to certain simplified models of
the quantum field equations. We do this for a
simple case in the last section, after generalizing
the notion of a ring in Seec. 5.

2. POLYNOMIAL SYSTEMS

We recall that a normed ring' B, sometimes known
as a normed algebra, is a collection of elements
z, ¥, 2, - -- which is a normed linear space over the
complex numbers with the norm |z of z satisfying
lzy] < |z} |y| for any pair of elements z, y of R.
Since we can always embed a noncomplete normed
ring in a complete normed ring we will assume R
is complete, and thus is a Banach ring.

Let us consider N elements z,, --- , zy in R,
with N finite. A system of s polynomial equations
of finite degree M will be of the form

2o a2 s, (D)

where the summation in (1) is over all values of the
N-vectorn = (n,, -+, ny) with [n| = D ., n; < M.
We say that this system is a homogeneous poly-

];:;,‘vzo’ r=1,...

M. M. Broido, “On Homogeneous Equations,” Cam-
bridge University preprint, 1964 (to be published).
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nomial system if s = N, and the N polynomial
equations can be written in the form

z, = >, b2y - 2. )

In (2) the summation is the same as in (1), though
now b{” = 0if [n| = 0 or 1. Evidently every system
of N polynomial equations is not a homogeneous
polynomial system of the form (2). The results we
derive in the next two sections may still be true
for the more general system (1).

We now extend (2) to a polynomial system as
follows: we interpret the quantities b{” in (2) as
given elements of the normed ring, with the condi-
tion b{” = 0 if |n| = 1. Thus we now allow an
inhomogeneous term z? on the right-hand side of
(2). Then we have the

Definition 1. A finite polynomial system on a
Banach ring R is a set of N equations in the N
elements z,, - -+ , zy of R of the form

T, = 2, b2 e 2y, 6)
n

where the summation is over vectors n = (n,, n.,
-, ny) with |n| < M, b{” = 0if |n| = 1, and the
b{” are given elements of E.

Definition 2. A homogeneous finite polynomial
system on a Banach ring R is the same set of equa-
tions as in Definition 1 except that in addition
b = 0if jn| = 0.

We may let N become infinite above, provided
that the resulting series on the right-hand side of
(3) are absolutely convergent for any set (z,, Z2, * * ).
Thus we have

Definition 3. A polynomial system on a Banach
ring R is a set of equations, one for each of a set
of elements z,, where « runs over an arbitrary index
set A, of the form

Ty = Z b;u) Hx;‘7 (4-)

where the summation is over vectors n with compo-
nents n, satisfying |n| = Y ... 7. < M. The
elements b{* are in R, and b{® = 0 if |n|] = 1.
The series on the right of (4) must converge ab-
solutely in R for any choice of the set z; and each a.

This requirement means that for each o only a
denumerable infinity of b{* are nonzero. Also the
condition |n| < M in the summation means that
only a finite number of factors enter in the product 3’

From Definition 3 we may define a homogeneous
polynomial system by adding to that definition the
requirement b{*’ = 0 if |n| = 0, for any a.
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The case when A corresponds to the set of positive
integers arises in quantum field theory,” the homoge-
neous case arising for bootstrapped particles.*

3. HOMOGENEOUS POLYNOMIAL SYSTEMS

We wish to prove that the only solution to a
finite homogeneous polynomial system with 2, - - - ,zx
small enough is the trivial one z,=z,=---=zy=0.
A similar result should hold for the more general
polynomial system of Definition 3, though our
method doesn’t immediately apply to it.

To prove our result we consider the finite poly-
nomial system as defining a transformation on the
direct product R X R --- X R = R" of R with
itself N times. This transformation F is defined for
any element z = (2,, --- , zx) of RY by 2’ = F(),
with

gl = 3 b7y - 2. ()
Let C be some positive number with |[b{”] < C
for alln and ». We introduce the product norm on R":
sup |z,|. (6)

1<i<N

lz| =

Then from (5) and (6), for any two z'", 2 with
] < f, 2|, < f, for some given positive §,

B~ 2] < Ch() B~ 2], @)
where the function h(z) is defined by
hz) = >, C |2 8)

Ini<M

The summation over n in (8) is only over [n| > 1,
so h(f) is a decreasing positive function as f de-
creases. Thus we may choose an f small enough so
that Ch(f) < 1. Also |2’| < Cyg(f) where

g(2) = nz CcZ. 9)

Again the summation in (9) is over all n with
1 < |n| £ M. Hence we may choose f small enough
so that Cg(f) < f. If we let d denote the maximum
value of f to satisfy both Ck(f) < 1 and Cg({f) < f,
then for all z in R" with [x| < d the transformation
F maps this sphere into itself. From (7), F also
satisfies the conditions necessary for application of
the contraction mapping principle.® Then there is a
unique solution to the polynomial system (3) in the
sphere [z| < d in B". Since there is already the trivial
solution 2 = 0, then this is the only solution there.
This proves the

Theorem 1. The only solution to a finite homoge-
neous polynomial system with z,, --- , zy small

4 A. Salam, Nuovo Cimento 25, 224 (1962).

8 M. A. Krasnoselskii, Topological Methods in the Theory
of Non-Linear Integral Equations (Pergamon Press, Inc., New
York, 1964), p. 141.

G. TAYLOR

enough is the trivial one ¢, = 2, = --- = z5 = 0.

We would like to extend this local uniqueness
theorem to a global uniqueness theorem, as done
by Broido.® This is not possible, as is shown by the
homogeneous polynomial system in two variables

Ty = 1%y, Ty = x§
This has the solution z, = e (the identity) for any
x,, as well as the trivial solution z, = z, = 0.
This example also shows that we may have an
infinity of different solutions to the system.

4. EXISTENCE OF A SOLUTION

We now turn to the problem of constructing a
solution for a not-necessarily-homogeneous finite
polynomial system. If the system is homogeneous,
the solution we construct will be the trivial one.
For the nonhomogeneous system we may again con-
sider the mapping defined by the system. Now it
is of the form z — F(z) -+ z‘”, where F(z) has the
same expression as (5), with b\ = 0 if |n|] < 1,
and z‘” is a given element of RY. We may again
use the contraction mapping principle to prove the
existence of a unique solution of the system

z =24+ F) (10)

in some sphere |z|] < d, provided d is chosen so that
|° 4+ F(z)| < d if |z] < d. This will be true if

l2°] + Cg(d) < d. 11)

We also require Ch(d) < 1, where % is the function
given in Eq. (8). It is evident that if C is small
enough (11) is satisfied for some d > |[z°]. So we
have proved that for some range of C small enough
there exists a unique solution to (10) in some suitable
sphere round the origin in R”. This proves the

Theorem 2. For a suitable upper bound on the
norms of the elements b{” of R the nonhomogeneous
finite polynomial system (3) has a unique nontrivial
solution in some suitable sphere round the origin
in R”.

We cannot discuss the global problem by the above
methods. However, the simple example of a non-
homogeneous polynomial system

T, = T1Zs, 2z, = Le + 3x;
has the infinite set of solutions z, = e, z, arbitrary.
This means that we cannot hope to give a global
extension to Theorem 2, nor that we can extend
the upper bound on the norm of the set of elements
b{” without limit in that theorem.
¢ M. M. Broido, “On the Complete Unitarity Equations

for Pion-Pion Scattering,” Cambridge University preprint,
1964 (to be published).
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. 5. A GENERALIZATION OF RING STRUCTURE

In order to apply the results of Theorems 1 and
2 to quantum field theory we have to extend the
notion of a ring. We introduce the term n-ring for
a set of elements @, b, - -+ which is a linear space
over the complex numbers, and which has an opera-
tion of multiplication for any n of its elements,
denoted by (a, - - - a,). This operation is

(i) multilinear in all its elements:

(@« - @icy08,054y -+ @) = ala, -+ @)

(ii) distributive in all its elements:

) = (@ i @)

+ (@

(iii) associative, in the sense that we may form the
product of the 2n — 1 elements a; In sets n
at a time, all in the same order, and the result
always agrees with

(@, - -+ a;00: + ala;.,

Gim1@Bisr ** 0 Gn)

(al R an)an+1 M a2n—1'

Evidently any n-ring R is also a (2n — 1)-ring,
and so on, but we assume there is no m < n so that
R is also an m-ring, and the n-product is that
generated by a suitable set of m-products.

The notion of an n-ring for n > 2 appears to be
new in the mathematical literature. A natural reason
for this may be that up to now such a concept
has not been useful to consider. However, such rings
certainly appear in approximations to the equations
of quantum field theory® and in bootstrap equations.*

We define a normed n-ring as an n-ring B which
is a normed linear space for which the norm |z]
of z satisfies

Then a complete normed n-ring will be called a
Banach n-ring.

We may extend Theorems 1 and 2 of the previous
two sections to the case of polynomial systems on
a Banach m-ring, where the terms on the right-hand
sides of (3) and (5) only involve products defined
in terms of the m-products, i.e., |n| only takes values
m,2m — 1,4m — 3, - -+, in the summations.

We hope to return elsewhere to an analysis of
the algebraic and topological properties of n-rings.

6. A MODEL FROM QUANTUM
FIELD THEORY

We consider the application of our two theorems
to a simple model arising in quantum field theory.
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We consider a self-interacting-scalar particle with
Z‘,’?,l p; = 0 corresponds to energy-momentum con-
servation. We consider these variables as one dimen-
sional, and in a limited region of the real axis, say
the interval (—a, a). We require that M is a sym-
metric function of its variables. We define a product
of these symmetric functions of three variables as

MleMa(plszs) = E f dp. dps ops + o5 — pl)

X M(p., ~ps, —ps)Mo(ps, Psy —Ps — Ps)
X My(ps, ps, —P2 — Ds),

where the summation in (13) is over all permutations
of the variables p,, ps, ps. If we introduce the norms
on the functions as

13)

M| = asup [M], (14)

the supremum being over all values of the variables
conserving momentum, then

| MMM < M| | M| | My

if @ > (20)}. Hence we may regard the set of sym-
metric functions of three variables satisfying mo-
mentum conservation, furnished with the product
of any triple of elements (13) and with a norm (14)
with @ > (2a)}, as a Banach 3-ring. The triple
product of (13) is not associative in the sense of
Sec. 4. However, if we consider the polynomial equa-
tion, for some constant &k and fixed vertex func-
tion M (),

M = My + kM, (15)
then the proofs of Theorems 1 and 2 go through.
This is because the three products of a given element
M of the 3-ring define an associative 3-ring. Hence
we have the results that if M, = 0, the homoge-
neous (bootstrap) equation (15) has no solution
except the trivial one, inside a certain sphere with
center the origin. If M (, # 0, then the inhomoge-
neous equation (15) has a unique solution inside a
certain sphere with center the origin. We will discuss
elsewhere’ the more interesting infinite polynomial
systems which represent realistic Lagrangian field
equations.
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For a Heisenberg model of a ferromagnet, it is known that the commutator of the Hamiltonian 3¢

and the operator §;- = 3.8~ is propormonal to So.
«- , n-gpin-wave problems. With the aid of the conjecture and the

lying energy levels of two-, three-, -

From this fact, a conjecture is made on the low-

assumption that there is no low-lying n-spin-wave bound state, it is concluded that the contributions

to the low-temperature expansion of the spontaneous magnetization due to two-, three-, - -
, O(Tt2-1) respectively.

wave problems are of O(T4), O(T3%2), ...

-, n-8pin-

HE low-temperature behavior of a Heisenberg
ferromagnet is described well by the theory of
spin waves introduced by Bloch.' The leading cor-
rection to the ideal spin-wave approximation was
first evaluated by Dyson.” Dyson solved the two-
spin-wave problem and calculated the leading cor-
rection of order T* for the spontaneous magnetiza-
tion. He discusses the correction due to the three-
spin-wave problem and showed that it is of order
T"*/*: though he was not certain about O(T®). The
purpose of this paper is to give a general discussion
of the order of magnitude of the corrections due
to two-, three-, ... , n-spin wave problems. This
discussion is based on a simple conjecture on the
low-lying energy levels of two-, three-, ..., n-spin-
wave problems® and a compact virial-expansion for-
mula for an assembly of quasiparticles, obtained
quite recently by the present authors.*
The Hamiltonian of the Heisenberg ferromagnet
is given by

L = ~H I'Z(Sh - S) - fz ZJfaS:S7

- ; Z Jfa(sfxsoa -

where two constant terms are added so that the
eigenvalue is zero for the ground state [0) where
S7% |0} is zero for all lattice sites f; H is the external
magnetic field along z direction expressed in a suit-
able unit, J,, is equal to the exchange integral J
when f and g are nearest-neighbor lattice sites and

8%,

* This work was supported in part by the Air Force Office
of Scientific Research Grant AF-AFOSR-445-63.

1 F, Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).

*F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).

3Tt is assumed that there exist no low—lymg bound states
of n-spin waves; for two-spin waves, this has been established
by Wgrtxs M. Woms Phys. Rev. 132, 85 (1963).

+T. Morita and T. Tana.ka, Phys. Rev. 138, A 1088 (1965).

zero otherwise, and J(0)is the value of J(k) for
= (} where

J(k) = IZ Jfﬂ exp ?:k'(rf - 9)'

An operator S is introduced by
Sz = Nt 3 8; exp ik-ry,
f
where N is the total number of lattice sites in the
system. Then it is easily confirmed that
[9c, 83} = HSS.

This implies that if | ) is an eigenstate of 3¢ with
eigenvalue E, then 83| ) is also an eigenstate with
eigenvalue E + H. In particular,

S5 10),  SeS% 10y, --+, 8" [0)

are exact eigenfunctions of I with eigenvalues
H,2H, --- , nH, respectively.

The commutation relation between the Hamil-
tonian 3C and Sy is given by

[, 8] = HSz — 2Nt X° 3 J,; exp (ik-r;)
7 i
X [exp ik-(r, — 1)) — 118,87 = HS + O0().
If ky, ks, -+
Sk, 10},

, k, are very small,
ngs;: 10>) T + S;x e S;l {0>

are the eigenfunctions of 3C corresponding to the
eigenvalues H, 2H, --- , nH with errors both of
O(kl): O(kn k?)r Tty O(kly Tty kﬂ): resp&(:t‘ive]y*5
Denoting the errors by o(ky,- - +, k) and e(k,,- -+, k,),
the eigenfunctions and eigenvalues are expressed as

¢ OCky, kz, o, k) = O(ky) + O(kks) Tt O(k,) +
(k;{))O((kﬁ 4 O(k)0(ks)O(ks) + - -+ + Ok )0 (k=)
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¥(k,) = Sk, [0) + o),

1153

‘I’(kn kz) = S;,S;. |O> + S;,(D(kz) + Sl:,‘P(kl) + <p(k1, kz)y
¥(k,, ky, k) = Si, 8.8k, |0) + Si.Si.oll:) + Si,Sk.el) + Sk, Sk.plks) + Si.ek,, ki)

Yk, ks, --- ,K) = Su. Sk, -+ S O+ > S5, -
i=1

E(kx) = H + f(kl)»
Ek,, k) = 2H + ek,) + e(ky) + ek, k),

) S;i—i‘S;Hl e S;,.‘P(ki) + o oy, Ky, e

+ S;,¢(kly k3) + S;,‘P(kh k2) + ¢(kll k2)k3))

r kn))

E(kn kz: ks) = 3H + f(kl) + €(k2) + f(ks) + e(k,, kz) + C(kzy ka) + f(kay k1) + e(kl) kz, ks)y

k) =rH A+ Yek)+ X

i=1 n2ij>i21

E(klv ka *

Quantities ¢(k,, --- , k,) and ek, -+, k,) vanish
if one of the arguments is zero, because a state in
which one of the arguments is zero represents an
exact eigenstate obtained by operating S, on an
eigenstate with one less arguments and hence there
is no need for corrections. Note that if k, = 0 in
¥(k,) and E(k,), then

¥(0) = S5 [0) + «0), E@0) = H + «0),
where S; |0) is an exact eigenfunction which belongs

to the eigenvalue H; hence ¢(0) = 0, and «0) = 0.
Now if k; = 0 in ¥(k,, k,) and E(k,, k,), then

Y(k;, 0) = So[Sk, [0) + k)]
+ ok, 0) = So¥(k,) + ok, 0),
E(k,, 0) = 2H + (k) + e(k,, 0)
= H + Ek) + ek, 0),

where S,¥(k,) is also an exact eigenfunction whose
eigenvalue is H + E(k,); hence ¢(k,, 0) = 0 and
e(k,, 0) = 0. Then by mathematical induction, the
statement is true. Thus orders of magnitude of these
corrections are estimated to be

ok, -+, k) = 0k) --- Ok,),
e, -+ k) = Ok) --- O,).

The order of magnitude of ek, --- , k,) as a
function of the size of the system is evaluated as
of O(N™™*") under the assumption that there exist
no low-lying bound states. The order of magnitude
of ¢'s is estimated as follows: As far as the bound
state does not appear, the shift of eigenvalue is
considered to be due to the change of effective
volume for particles due to the potential. For the
two-spin-wave problem, the disturbance of the Ham-
iltonian appears when two spin waves come to the
same or nearest-neighbor lattice sites. This changes

e(khkl) + e + e(klyk'lr o

-, k).

the effective number of lattice sites for two-spin
waves from N’ by a number of order N. This results
in a shift of O(1/N)in the eigenvalue: ek, k') =
O(1/N). In the three-spin-wave problem, e(k, k', k')
is due to the change of the effective number of
lattice sites, caused by the cases when all three come
to the same or nearest neighbors of each other;
that is, a number of O(N) in N°®. This results in
the correction of O(1/N?) to the energy eigenvalue:
ek, ¥, k) = O(1/N?). Similarly, ek,, --- , k.)
is estimated to be of O(1/N*%).
For cubic lattices, we know that

o) =0, k) = 2S5[J(0) — J()] = Ok,
‘P(kly kz) = O(kl 'kz) + O(kf, kﬁ),
ek, kz) = Ok, k) + O(kl’k2)2

+ O(kfl kg) + O(kl; k2)6‘
The above eigenfunctions can be specified by a
set {n.} and are expressed as

Vi) = JI S0y + --- .

k

The corresponding energies are expressed as

En,} = ;nk(H + (k)

+ nknk:e(k, k’) + et

k<k’

The partition function, Z, of t

Z = [Z; exp (—BE{n«}),

This is also the grand partition function for an

assembly of Bose quasi-particles which has been

analyzed in a separate paper.* The virial expansion
formula obtained there is given by

InZ = —BE{pk)} + S{o)}/ks

his system is given by
6 = 1/kBT.
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with
S{ek)}/ks = — Zk) {p(k) In p(k)

— [1 + p®)] In[1 + pk)]},
where p(k) = (nx). The expression for p(k) is ob-
tained by

0 = aln Z/3p(k)
or
p(k) = {exp B[H + e(k) + Ae(k)] — 1}
where

H + &) + Ack) = dE{p(k)}/dp(k)
= H + «k) + g: p(k;)e(k, k;) + - - -

1
+(7L____1_)':Z ;p(k"’)"'

X plkyelk, ks, -+ k) + - .
Noticing that
dlnZ
9 In Tre ™ , '
= ;z_;le{) = —Z,[(S,.y — 8],

one obtains the total magnetization in terms of p(k),*
M = NS — Y o(k).

k
Using the above estimate of e(k;, k,), the leading
correction to the spin-wave energy Ae(k) is found
to be

; plls)e(k,, ks) = O(3)-O(T°"),

since p(k,) is even in k, and so only the part which
is even in k, in ek, k,) contributes. That part is
O(k?)-0(k2) and summation over k, gives us
0(k?)-O(T*?). If one expands p(k) in powers of this
correction to e(k), one obtains a correction O(T")
to the spontaneous magnetization. In general, the
contribution to Ae(k) of the n-spin-wave problem
is estimated as

kz: kZ P(kz) p(kn)e(k,k2, ,kn)

~ O(kz) _O(Ts(n—l)/i.’)

by noticing the fact that the part of e(k, k,, -- - , k,)
which is even in k,, - - - , k, is O(k®*)-O(&32) - - - O(k?).
This results in the correction O(T**7T*""17%) =
O(T**7") to the spontaneous magnetization.

As a result, the corrections to the spontaneous
magnetization are found to be

O(Ti) , 0(T13/2) , O(TQ) , O(TSn/z—l)

§ See Appendix for a more detailed derivation.

T. MORITA AND T. TANAKA

for two-, three-, four- and =n-spin-wave problems,
respectively. This means that the coefficients of 7°
and T° would be calculated by solving the two-spin-
wave problem by generalizing Dyson’s calculation
of the coefficient of 7™; that is, by determining the
eigenfunction p(k,, k,) correctly up to O(k,, k,)*
or O(k,, k.)®and correspondingly e(k,, k,) correctly
up to O(k,, k,)® or O(k,, k,)®. The coefficients of
O(T*?) and O(T''?) are equal to those given by
the ideal spin-wave approximation. Actually the
coefficients of 77 and T° would also be calculated
by solving the two-spin-wave problem, but these
are not significant unless the first two terms of three
spin-wave contribution are known.
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APPENDIX

The expression for the total magnetization M =
>, (S,.) in terms of p(k) is found on a basis of a
general property of the Hamiltonian as follows:
The Hamiltonian 3 consists of two terms, the Zee-
man term, H 3., S,,, and the exchange term plus
a constant. These terms commute with each other
and one of them, the Zeeman term, appears with
an arbitrary factor H, so that an eigenfunction of
JC is an eigenfunction of both of these operators.
This implies that an eigenfunction of 3¢ is expressed
as a linear combination of eigenfunctions of operator
>, 8,., all belonging to the same eigenvalue. It
has been shown that the eigenfunction of 3¢ is
specified by {n,} and it has a term []. S |0).
Now it can be seen that this is an eigenfunction
of >, S,, with eigenvalue NS — D i ny, therefore
the expectation value as well as the eigenvalue of
2., 8,, in the eigenstate ¥{n,} is equal to NS —
Zk ng. Hence the equilibrium magnetization M =

E, (S,,) is given by
M =NS — > p(&).
k

The derivation given in the text is based on the
fact that the energy corrections e(k,, k,, ---) are
independent of H. Now the eigenfunction of 3¢ is
a simultaneous eigenfunction of both the total mag-
netization Y, S,, and the exchange term, hence
the eigenvalue is the sum of eigenvalues of the Zee-
man term and the exchange term. Therefore the
energy corrections e(k,, k,, ---) which are due to
the exchange term are independent of H.
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A lower bound given by Feynman for the quantum mechanical free energy of an oscillator is proved,
refined, and generalized. The method, application of a classical inequality to path integrals, also gives
upper bounds for one-temperature Green’s functions.

FOR an oscillator with Hamiltonian

H=p/2m+V(, aeo-pr=1, 1)

the inequality for the Helmholtz free energy (with
B = (k1)

= —8 ' InTre ™

> 187 In (228K /m) — 87" In ( f g FTe dx) 2

has been given by Feynman' on the basis of an
intuitive argument relating to the path integral
representing exp (—pF). In this note, we prove
Eq. (2), show how it may be sharpened, and compare
it with corresponding upper bounds for F.

The one-temperature Green’s function for a sys-
tem of N distinguishable nonrelativistic spinless
particles of mass m may be represented by the
Feynman-Kac integral®

x| e |z,) = f

x(0) =xy
x(8)=x3

X exp [7’% fo " 2? df]
X exp [- fa " Vo) df]- ®

Here x(r) is a continuous trajectory in 3N-space
with » & [0, 8] (dimensionally, %r) the “time”
variable. V(x) is the potential assumed position-
dependent only. D(x) together with the first expo-
nential represents Wiener measure.

We choose a comparison potential V,(x) and
write, with AV = ¥V — V,, the second exponential
in (3) as

exp [- fD * Vo) dT]

t R. P. Feynman, Lectures on Statistical Mechanics (Rand
Corporation, 1959) (unpublished).

2 R. P. Feynman, thesis, Princeton (1942}). M. Kae, Trans.
Amer. Math. Soc. 65, 1 (1949).

D(x)

X exp [— fa " AV() da]- @

We combine the first term in (4) with the [ﬁrst
exponential in (3) and apply to the integral so
obtained over the second term in (4) the generalized
Haolder inequality®

Lx exp {j:s In |[K(s, 81 ﬂ(ds)}.ul(dsl)

< e {[ [ ([ 166,801 i) Juan}, o

valid for u(S) = 1, interpreting s, as trajectory
parameter and s as ¢/8. Thereupon (GH) becomes
D)

B
e fx) < { d [
®le =) < exp (8 -/; vIn j;m)-,,

x{8) =2,

8 ]
X exp {—-.-2—% fo (1) dr — fo Vo(x(2)) df}

X exp (~BAVG(I]|
or, if we make use of (3), of the completeness of
states in coordinate representation (i.e., the defini-

tion of the Wiener integral), and abbreviate H —
V4V, = H,,

x| e |x,) < exp {B" j: do In [f dx(x,| e~ |x)

X exp [~BAV(®)[(x] e™*= ?xz)}} &)
or, in brief
®] e [x,)
8
< exp {B” f do In (x,] ¢ Fog P4 Vg PO He IXg)}'
0

(6) is an upper bound for the perturbed Green’s

¥ N. Dunford and J. T. Schwartz, Linear Operators {Inter-
science Publishers, Inc., New York, 1958), Vol. I, p. 535.
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function in terms of the unperturbed one and the
perturbing potential AV. This bound may be con-
trasted with the lower bound

(x| e [x,) > (x] e PHe |x.) exp {—(x,[ e P b A

X fo ’ do f dx(x,| e [x)AV(x)(x| e F~ Ixz)} (6)
or, in brief

X,) exp {‘(xxl e P |x2>_l

B8
Xf do(x,| e T AVe™ F-7H Ixz)}
)

x| e |x) > (x| e

obtained by applying to (3), (4) the inequality of
the arithmetic and geometric means®'*

fs |f)| u(ds) = exp { fs In [f@)] n(dS)} ,  (AG)

valid for u(S) =1, which was exploited by Feynman."
That the right-hand side of (6) is smaller than the
right-hand side of (5) can be seen directly by apply-
ing (AG) on the x-integration.

The trace of (5) gives an upper bound for the
partition function. To obtain a simpler although
less sharp bound, one may apply (AG) to the o-
integration in (5), obtaining

8
x| e x,) < %3 f do f dx(x,| " |x)

X e-—ﬁAV(x)<x| e-—(ﬂ—a)l:n7 [x2>' (7)

and taking the trace gives

Tre ™ < fdx(xl e P |x)ePaY®
= Tr (""", (8)

Setting in (8) V, = 0, AV = V gives for the oscil-
lator (1) the inequality (2). The upper bound ob-
tained from (5) by the same substitution is, of
course, lower.

Taking the trace in (6) and, to simplify although
hereby worsening the bound, applying (AG) to the
%, = Z, integration gives
Tre? > Tre?

X exp {—[Tre ™78 Tr (*"aV)},  (9)

4 (GH) may be derived from (AG) by substituting for

f(s) the expression K(s, s1)[f., |K(s, 81)u(ds;)]* and inte-
grating over s;.

KURT SYMANZIK

the well-known inequality of Bogoliubov.® For the
same H, as in (9) the Peierls inequality’ always
gives a better bound as follows from (AG), this last
bound, however, seems not to be easy to compare
with the trace of (6). That the right-hand side of
(9) is smaller than the right-hand side of (8) follows
from (AG).

The bounds (5), (7), and (8) may be optimized
by varying parameters in V, in the same manner
as lower bounds are. For 8 — « all these bounds
give the same inequalities for the ground-state
energy Eg, with ground state |G,) to H,,

Eg, + min AV(x) < Eq < Eq, + (Go| AV |Go).

Also path integrals involving a potential term
depending on two ‘“‘times” instead of one as they
arise, e.g., in the polaron problem” may be treated
by an obvious extension [e.g., taking in (GH) the
s-integration over a two-dimensional domain] of the
method shown here. Also ¥, may be chosen nonlocal
in “time” provided (GH) can still be applied and
the expressions required in (5), (7), or (8) be cal-
culated. This is the case (up to elementary analysis
at least) for V, bilinear in z. However, these methods
seem not to give in the polaron problem’ a finite
lower bound for the ground-state energy in a simple
manner for the Hamiltonian chosen in Ref. 7.

Note added in proof: 8. Golden [Phys. Rev. 137,
B 1127 (1965)] has shown that the inequality (8),
together with a class of refinements of it, holds for
general Hermitian H, and AV. The above method
is easily modified to yield an extension of Golden’s
result to Green’s functions for the present case of
classical and for Bose—Einstein statistics. It is hereby
seen that symmetrizing the bound for the Green’s
function of classical statistics always yields a result
at least as good as that obtained using Bose—Einstein
statistics throughout. This remark also applies to the
following other generalization (for both statistics):
Write the semigroup formula for (x,| e™*” |x,) for an
arbitrary partition of the interval [0, 8] and insert
the bounds (5), (6), and (7). The upper and lower
bounds so obtained monotonically decrease or in-
crease, respectively, if the partition is refined.

5 N. N. Bogoliubov, Dokl. Akad. Nauk. SSSR 119, 244
(1958) [English transl.: Soviet Phys.—Doklady 3, 292 (1958)].

¢ R. E. Peierls, Phys. Rev. 54, 918 (1938).

7 R. P. Feynman, Phys. Rev. 97, 660 (1955).
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In this paper a survey is given of some results which have been obtained recently concerning the
singularities of holomorphic functions having integral representations. These results are all essentially
extensions or modifications of those developed by Hadamard (for the proof of his multiplication of
singularities theorem) to the case of several complex variables. As a concluding remark we consider
the connection between the original Hadamard idea and the elastic unitarity integral of the quantum

theory of fields.

L INTRODUCTION

'HE classical problem of the connection between

the singularities of the holomorphic funection
K(z; ¢) and the contour integral F(z) = [, K(2; ¢) dt
has found application in the quantum theory of
fields. When K(z; {) is a rational function of the
complex variables (z; ) & C"xC" [i.e, when
K(z; §) = P(z; £)/Q(z; ¢) with P(z; ¢) and Q(z; §)
polynomials] and £ denotes the integration domain
(€, -+, £,) in C" Landau'® has shown that
F(z) is singular only on the set

{z 1063 9) = 5 Q6 ©

-2 e ==L =

In this paper we generalize this result to a somewhat
wider class of holomorphic functions, the holomor-
phic functions singular on analytic sets. It will be
shown that many of the qualitative concepts asso-
ciated with the (rational) propagators of perturba-
tion theory have a natural transcription to this
wider class.

The results are collected in a series of theorems
starting with Hadamard’s treatment of the holomor-
phic functions® determined by germs of the form
> =, a.b.2" and go on to the physically interesting
multiple integrals. Some of the results are already
within the arsenal of the quantum field theorists
in one form or another®; but, particularly in the

* This research was supported in part by the National
science Foundation under Grants GP-3, GP-2067, and GP-
3937, and also in part by the U. 8. Air Force Office of Scienti-
fic Research under Grant AFOSR 400-64.

1 D, Landau, Nuecl. Phys. 13, 181 (1959).

¢ D. Landau, Zh, Eksperim. i Teor. Fiz. 37, 62 (1959)
[English transl.: Soviet Phys.—JETP 10, 45 (1960)].

3 J. Hadamard, Acta Math, 22, 55 (1898).

4 For example see: G. R. Screaton, Dispersion Relations
(Oliver & Boyd, Ltd., Edinburgh, 1961), p. 65; G. Killén,
Nucl. Phys. 25, 568 (1961).

case of the multiple integrals, the problem has not
been precisely formulated. This we propose to do.
A number of the theorems are tailored to special
requirements of the quantum theory of fields, and
potential scattering,® notably, Theorems 4 and 5
which are valuable tools for studying the unitarity
integral. We conclude with a remark on the connec-
tion between the original Hadamard idea and the
unitarity integral.

II. SINGULARITIES OF ANALYTIC FUNCTIONS
WITH INTEGRAL REPRESENTATIONS

Hadamard® proved the following result in 1898
(the multiplication of singularities theorem®).

Theorem 0: If

&) = 2 e 2| <R,

96) = 2 b2, || < R
n=0

furthermore if f(2) has singularities at «;, a3, --- ,
and g(z) has singularities at 8,, 8,, --- then the
singularities of F(z) = Y a,b,2" are to be found at
the points a,.8..

To prove this Hadamard considers the following
representation for F(z):

5 || 1000/5) d/s,

F(z) = 57
where C is a simple contour lying in the annulus
[2]/R’ < |¢| < R. This gives us a representation
for F(z) in a neighborhood of the origin. This rep-

8 8. @. Aks, R. P. Gilbert, and H. C. Howard, Technical
Note BN£376,’ Jnstitute for' Fluid Dynamics and Applied
athematics, University o aryland, College Park, Md.
J. Math. Phys. (to be published). g Park, Md,
_‘I % ]i[)a:damar%,h A?’;a, %\’Iagl. 22, 5(5)1(( 1898).
. Dienes, The Taylor Series ford Uni it;
Oxford, England, 1931y, (Oxford University Press,
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resentation may be continued analytically along a
curve T to z;, provided no point of T' coincides with
a singularity of the integrand on the path of integra-
tion. Hadamard notes that this representation may
be continued further along T by continuously de-
forming C, such that C' at no time crosses a sin-
gularity of the integrand. Since the singularities of
f(2) are at {a,} and those of g(z/¢) are at {z/8,}
we see that it is always possible to make such a
deformation except when a point z/8, coincides with
a point «,,, that is for z = «,,8,. For further details
see Ref. 8.

Gilbert® has modified the idea used by Hadamard
in the proof of the above theorem to prove a theorem
concerning the location of singularities of a harmonic
function of three complex variables. We give below
a theorem for holomorphie functions of n complex
variables whose proof is an immediate extension of
the proof given for the case of harmonic functions.®*°

Theorem 1: Let K(z; ¢) be an analytic function
of (n + 1) variables (z; ¢) = (24, * * - , 2,; ¢). Further-
more, let K(z; {) be regular-analytic in a product
domain (D™ X ®&") C (C" X "), such that,
for a rectifiable contour £ C ®‘", the function F(z)
defined by the integral representation

d
FO =5 [ Ke 0T,

e={r]r=t)=0;0<t<1) @)

is regular-analytic in ©™. Then if the singularities
of K(z; ¢) are located on the analytic set ™ =
[8(z; ) = 0}, F(z) is regular for all points (z) &
& N Q™," where Q™ = {88/3¢(z; £) = 0}.
Proof: Since we assume F(z) is regular-analytic
in a domain ™, we may choose a point (z,) € D
and a neighborhood of (2,), 9™ (2,), in which we
may define a regular function element, or “germ”
of F(z). Starting with this germ we may continue
it analytically along a contour @{}) starting with
(20) and terminating with the point (2) providing
no point of @{Y) corresponds to a singularity of the
integrand on the path of integration, £. We shall
refer to the union of all such points (z) as the ¢nitial
domain of definition of F(z). Now, since the singu-
larities of K(z; ¢) lie on ©™ we realize that, as we
continue F(z) along C{}), the singularities of the inte-

8 See Ref. 7.

* R. P. Gilbert, Pacific J. Math. 10, 1243 (1960).

1 R, P. Gilbert, J. Reine Angew. Math. 205, 75 (1960);
Arch. Ratl. Mech. Anal. 6, 171 (1960); J. Math. Phys. 5, 983
1964).
( 1 %‘hroughout this paper the expression A M B, where
A = {(z, OIF(z, &) = 0} and B = {(z, {)IG(z, §) = 0} is
taken to be {z] there exists ¢, F(z, {) = G(z, §) = 0}.
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grand move in the {-plane. Hence, it is clear that the
initial domain of definition must consist of all those
points (z) which are reached without a singularity
in the {-plane passing over £. We note, however,
that we may extend the integral representation for
F(z) to other points by continuously deforming
£ — £/, provided that in so doing we do not cross
a singularity in the ¢-plane. All such points (2)
reached by continuing F(z) along paths €{}) which
can be reached by suitably deforming the path of
integration we shall refer to as the domain of associa-
tton of F(z). It is clear that the domain of association
consists of the set of all points at which there exists
a regular germ of F(z), and furthermore, if one con-
siders all such possible paths €{}}, one constructs
in this way all the regular germs associated with F(z).

We now consider when it may no longer be possible
to continue F(z) along a path €{?,. This case occurs
[assuming we can solve S(z, {) = 0 as a function
of z, { = af?), say] when a singularity { = «af2)
tends to cross the contour £ and we may no longer
deform £ to avoid it. We assume we have continued
F(z) along €{)), up to a point (z;), and that at
(2) = (z.) there exists a singularity { = « on the
path of integration. If S(z,; ¢) has a simple zero
at { = @, we may approximate

S(z; §) ~ (¢ — ) 38/8¢ (215 @)

inasuitably small neighborhood 9t(e) = {¢||¢ — | <e€}.
In this case, it is clear that for § &€ (), SE; ) # 0
except for { = o, and we may deform £ about
the point { = « by letting it follow a portion of the
circle {|¢ — «/ = l¢}. This completes the proof
of our theorem.

Remark 1: Note that any singularities of K(z, {)
contained in the boundary of the holomorphy domain
of K can be included in a topological sum of analytic
sets, so the singularities arising from these points
will be accounted for by Theorem 1.

Remark 2: One might give this result a geometric
interpretation by saying, that unless one is on the
“envelope” ¢™ = &™ N Q™ of &™ it is always
possible to avoid a singularity by slightly varying £.

Remark 3: If 8(z,; {) = 0has a second- (or higher-)
order zero at { = «, then we know that the inverse
of the function w=_8(z,; {), i.e.,  =f, (w;2,) (v=1,2)
has (at least) two branches in a suitably small
neighborhood of w = 0. In this case it is posstble
that both branches of the singularity manifold may
pinch together on opposite sides of £, and then,
according to the original Hadamard idea of singu-
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larities that “pinch,” this corresponds to a possible
singularity of F(2) at (z) = (z,).

Remark 4: To show that this theorem is not empty
we mention that it applies to kernels, K(z; ¢), that
are meromorphic on (n -+ 1)-dimensional, finitely
sheeted, analytically ramified covering spaces'® of
a domain D" C C"*Y, For example, we may
consider for kernels rational functions, K (zy,- - -, 2,; {),
defined on an algebraic manifold given by an expres-
sion of the form

po(22; ey Ry g.)zl\lr + p1(227 tet 4 % ;)zl_l

+ .- +pN(z2; ot ,Z,,;g') = 07
where the p,(25, +-+ , 2.5 ¢) w =0, 1, , N) are
polynomials in the variables z,, 23, - - , 2,, §.

Theorem 2: Let K(z; ¢) be an analytic function
of (n + 1)-variables as in Theorem 1, with a de-
composition in (D™ X &) into a product of non-
constant, regular-analytic functions K(z; ¢) =
filz; Of:(z; ¢). Furthermore, let the function
f.(z; &) (v = 1, 2) be singular on the analytic set
S™ = {{ = a,(2)} (v = 1, 2), respectively, with
S™ 5 ¢, » = 1, 2. Then the “possible singularities”
of the function

FO =35 [ 1GR9, @)
generated from the singularity sets & above, as
given by either the Hadamard method or the “
velope method”’ are the same.

Proof: By “possible singularities’” we mean those
points (2) which we are unable to list as regular
points by either Theorem 0 or Theorem 1. [The
phrase ‘“‘the Hadamard method’” used in the theorem
above is Gilbert’s name'® for a natural generalization
of Hadamard’s theorem—Theorem 0 above—which
says F(z) is regular at all points (z) & & N S5
and which follows readily from the technique of
proof used for Theorem 0]. We apply the “envelope
method’” of Theorem 1 by constructing as our sin-
gularity manifold for K (z; ¢) the analytic set & =
{[t — ew(@)][¢ — as()] = 0}. Following Theorem 1
we compute Q™ = {[¢ — a,(2)] + [§ — aa(2)] = 0}.
Since the singularities must lie on &™ N Q™
we conclude this means (z) is regular providing
@) G {r—a:(e) =0} N {{—as(e) =0} = &” N &;".

The assumption of “explicit representations” of

12 H. Behnke and H. Grauert, “Analysis of Non-Compact
Complex Spaces” in Analytic Functions (Prlnceton Univer-
sity Press, Princeton, New Jersey, 1960), p

13 R. P. Gilbert, J. Math. Phys. 5, 983 (1964), also R. P.
Gilbert (Ref. 9).
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the singularity sets of f,(¢; £), » = 1, 2, [ie, { =
a,(z), v = 1, 2] rules out singularities due to coin-
cidences involving » = 1 or » = 2 alone. To be
more specifie, let us consider the envelope method
where f,(z; ), » = 1, 2 is singular on &™ =
{G; &) | 8,(z; &) = 0} and where S,(z; ¢) is a hol-
omorphic function. Then if we set

S™ = {(z; &) | 8i(z; £)8:(z; ) = 0}
and
Q™ = {(z;£) | 8/8¢)8.8: = 0},

it is possible that F () may be singular on & N Q™
since this set is a subset of & N Q™. If §, =
but S: % 0 and if 48,/9¢ = 0 it is evident that
z may satisfy both intersection conditions but not
be one of the singularities mentioned in Theorem 2.
However, in this ease it is not possible to represent
S™ in the form {(z; {) | ¢ = a(z)} where the first
derivative 88,/6¢ vanishes. The requirement that
the singularity sets of f,(z; {), » = 1, 2, be explicitly
represented is equivalent to
(n) (n) __
}]jﬂ M N QM = .

A natural generalization of these results may be
made by considering multiple integrals, and com-
binations of the Hadamard method and envelope
method used alternately. As a first attempt in this
direction we give the following theorem, which is
a form of a result given by Gilbert.™*

Theorem 3: Let K(z; 1, ¢2) be an analytic function
of (n + 2) Va'ria'bles) (z: <1 fz) = (Zl, Tty fz),
regular in a product domain (D™ X &%) C
(C* % C?), where 8 = @Y X ®. Let £, C ®Y,
(v = 1, 2), be closed, rectifiable curves in the
;,-planes, respectively, and let K(z; ), ¢.) be sin-
gular on the analytic set ™" = {S(z; ¢, ¢2) = 0).
Then, the function F(z) defined by the representation

1Yy 1 2
ro =) [ 8] Erenm,
for () € D™, (2.3)

is regular for all () & SV N Q™Y N QY
where

Qgrﬁl) = {3_‘?’ (z; 3'1, g‘z) = 0}, (V = 1, 2)-

Proof: Our proof parallels those given before. We
consider all points (2) which may be reached by
continuing F(z) along a contour €{}), such that no

# R. P. Gilbert, J. Reine Angew. Math. 205, 75 (1960);
J. Math. Phys. 5, 983 (1964).
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point of this contour corresponds to a singularity
of the integrand on the domain of integration
£, X £,. Again we attempt to enlarge this initial
domain of definition by continuously deforming £,,
and £, providing we do not let either curve pass
over a singularity in its respective plane. (As we
deform one of the curves we must be careful, that
a singularity does not move over the “stationary”
curve in the other plane.) We assume we have been
able to continue F(z) to the point (¢) = (z,), where
the singularity (¢,, {2) = (@i, ;) threatens to meet
£, X &£, If both 88/0¢,(z; oy, ) (v = 1, 2) are
not zero then in a suitably small bi-cylindrical
neighborhood of (e, a,), N (o, ) = {(¢&1, &2) |
lt, — a|< ¢,; v = 1, 2} we may approximate:

38(z;; ay, ay)

S(Zl;g‘ly ;2)%(3-1 _al) ag‘l

98(z;; an, @)
¢, '

In this case we may deform £,, £, about the point
(a1, ;) in such a manner that S(z;; &, &) = 0

for (¢, ¢2) on the set
_ & 35/35'1
{'f‘ al = } {'“ Tl =7 iaS/ar2|}'

If one of the terms 9S/d¢, (z; a, az), (v = 1, 2)
vanishes, then the proof follows that of Theorem 1.
This concludes our argument.

We consider next several extensions of this last
result. Let us assume first that K(z; ¢, {.) may
be decomposed into the form K(z; ), () =
fi(z; &1, $f2(2; €1, §2), where fy, f; are analytic
regularin (D™ X 8®), 8 = ®" X &". Further,
let f,(z; ¢, £2) (v = 1, 2) be singular on the analytic
set S = {S,(z; &1, £2) = 0};let @ be a curve
in the space of the (z)-variables starting at an initial
point (z,) € D, and terminating at (). We wish
to consider now the continuation of the germ [de-
fined about an initial point (2,) € D™] given by
the integral representation

F(z) = (21”) f f f1iz; 1y $fa(e; &1, £2) Ay i,
2.4)
and to this end we introduce the following notation:

@(n+l) {56? Sv(z; g‘ly 3-2) = O}; (V = 17 2)! (253')

+ (fz - az)

e = {% S(e; t1, §2) = 0}, ¢ =1,2), 2.5b)
G = {@_ﬁ _ 98,38 _ 0},

2.5
FTAF TR T T @.5¢)
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oY = {8:(z; &1, £2)8a(2; &1y &2) = O}, (2.6a)
{(n+1) — a’Sl 9_5’_2. — }

1 = {afl Sz + S1 ag_l - y (2‘6b)
(1) {gil S, + Slg}‘% = } (2.6¢)

Now let us consider how singularities may occur.
Certainly, it is possible for singularities to correspond
to the “envelope” of either &{"7" or &{";". Hence,
singular points of F(z) may be contained in the set
(n+1)) (n—1) _ (uin—1)
vyz {u-Q,z & } B uyz ¢ nE o
where @' is the corresponding ‘“‘envelope” for
& . On the other hand the Hadamard approach,
that is, eliminating ¢, or {, between the equations
S, = 0 and S; = 0, applied to either variable ¢,,
or ¢, first, followed by the envelope method applied
to the eliminant yields the following set as containing
possible singularities:

$" = &Y N ey N e, o
_ {a_& 38, 88,88, _ 0}
B T

The set ;" occurs upon applying the envelope
method to the eliminant of &{*;¥ N &{"+" regard-
less which variable ¢, or {; has been eliminated (by
the Hadamard approach), providing no 48,/8¢, = 0
(v, 0 = 1, 2). The case where all the 38,/8¢, =

is contained above (in the envelope method ap-
proach) and if not all the 48,/9;, = 0 we may
compute H"" by eliminating a particular variable
first. Finally, by applying Theorem (3) to the com-
bined singularity manifold of the integrand, Q™"
we obtain as the set of possible singularities for F(z)

@(n—l) = Q(()rwl) m Qirwl) m D;,ﬂl).

Moreover it is easy to see from the definitions of
7V and GV that $V C €. We summarize
the above discussion with the following theorem,
which has already appeared in a more general form
as Lemma (3.2) in a Technical Note by Gilbert
and Howard®®

Theorem 4: Let f,(z; ¢y, {2) (® = 1, 2) be regular
analytic in (D™ X ®®) with the singular sets
&Y as described above. Further, let £, be recti-
fiable contours in the {,-planes, respectively; then
the continuation of the analytic function element
given in D™ by
" R. P. Gilbert and H. C. Howard, Technical Note BN-366
(July 1964), Institute for Fluid Dynamlcs and Applied

Mathematics, University of Maryland, College Park, Mary-
land (to appear in the Australian Math. Soc. Joumal).
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Fle) = (ﬁ)z 4/;‘ _/;. h(z; 1y $)fa(z; &1y $2) dEy dE,

is regular at all points (z) which may be reached
by continuation along €{" provided no point of @{"
meets the set G, A somewhat sharper estimate
for the singular set of F(z) is the set of points $" V.
Finally, we consider integrals of the form

ro= (&) [ [ ke

X fiz; $0f(e; &) d& da 2.7

and apply our previous results. Let &Y =
{8 ¢, 82 = 0}, &% = {f, = 6,0} ¢ = 1,2)
be singular sets of K(z; {y, {2),and f,(z;¢,) (0 = 1, 2),
respectively. Let " = {9/3¢,8(z; ¢, &) = 0},
u=1,2 The smgularlty manifold of the integrand is

Q& = {8@; §1, £ — 6162 — ¢:(2)) = 0},

and we define, as usual,

QP = {8, D1 — d)(§2 — )

— S(z; )2 — ¢2) = 0}
and
QY {8e.z; (& — 0§z — ¢2)

— 8@; (¢ — ¢) = 0}.
Clearly, if we apply the envelope method to the
entire integrand we have as “candidates’” for singu-
larities the set {),~0.1.2 Q™.
If we apply the envelope method to the singu-
larities of the kernel we obtain the set

n @(n+l) n Q(?H-l).

#=0,1,2 r=0,1,2
Applying the Hadamard method to both ¢, (» = 1, 2)
variables we obtain
@(u-!-l) m @(n) n @(n)

= {S(Z;¢l(z); $:(2)) = 0} C 'm ) Q:M-l).

Corollary to Theorem 4: The possible singularities
of the analytic continuation of the function element
given in D™ by (2.7) lie on the set

(n+l) N [(n @(M—l)) U, (n @(n)
r=1,
C n Q(rﬁl).

#=0,1,2

We have finally Theorem 5, which appeared earlier
in more general form (for n-fold integrals) as Lemma,
(4.2) in a Technical Note by Gilbert and Howard.'®

16 See Ref. 15.
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Theorem 5: Let K(z; ¢) be a holomorphic function
of the (n 4~ 2)-complex variables (2, * - , za; {1, £2)
in a product space 8™ X D C C™¥. Let T
be topologically a 2-dimensional chain whose bound-
ary 4T is fixed. Furthermore, let the singularities
of K(z; ¢) lie on the analytic set,

0" = {8(; ¢) = 0}.

Then the holomorphic function defined by the in-
tegral representation

FO = [ Fei9ds A dia,

is regular at all points not lying on the set A, \J A,,
where

2
(n+1)
ne.-,

A=
=0
— (n+1)
4, = U @0 ’
(Hear

and

meny _ 10805 &) _
&, = {—_ag‘,, = 0}(y =1, 2).

Proof: Let us continuously deform I' — T, such
that the boundary remains fixed, ie., T = oT.
If in so doing this we have not passed over a singu-
larity of the integrand, i.e., if the kernel K(z; ¢)
i8 holomorphic-regular for a fixed (z) and for ({f €V,
where 3V = T — T, then by the Cauchy—Poincaré
theorem we have

f K(@; 0 dey A dgy = f~K(z; £ de A dia.
r r

From this it is clear that as we continue F(z) along
a curve originating at say (2°) we may treat all
singularities that threaten to cross at the interior
points of T’ in the same manner as we did in our
earlier results. That is it follows from before that
the points lying on A, = ()i, S are possible
singularities.

Singularities which tend to cross T' at a boundary
point (§) € 4T are however of a different type.
We cannot deform the boundary since it is given
to be fixed. Hence these points may be singular
points, and so we conclude the points on A, =
Nreor S may be singularities of F(z). We
remark that since A, is contained in a set of real-
dimension (2 — 1) that these points may correspond
to a natural boundary of F(z).

III. CONCLUDING REMARKS

In closing we note an interesting connection be-
tween the original Hadamard idea (Theorem 0) and
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the elastic unitarity integral of the quantum theory
of fields."” The unitarity integral is given by*®

+1
#632) L=t [ e,

§ -1

éa(s; ) =

+1 61 — z} — z; — 2° + 2x.2.2)
x dxz 1 — 27— 22 — 2° + 2z,2,7)}

X ¢2(3; T)(s; Z2). 3.1
For —1 < z,, 2,, * < 41, Omnes" has given a
replacement for the factor used for the kernel in
(3.1), namely,

61 — 22 — x5 — 2° + 22,4.7)
(1 — 22 — 23 — 2° + 2rz.2)°

= g é @l 4+ DP,(z )P, (x:)P,(x),

where the P, () are Legendre polynomials. On intro-
ducing Legendre coefficients, or partial waves,

3.2

+1
bio@ = 3 [ PedbGie), @3
8 = 3 [ dus Pueols; 22,
the unitarity condition (3.1) becomes
. . 2 }
8530) — s ) = 7 (2740
X 2@+ Doa@b@Pi@).  (G4)

The right-hand side is similar to the sum D_ =, a,b,2"
contained in Hadamard’s multiplication of singu-
larities theorem, and the functions

S el DpOPE, 39

é(s; 2) =

8:6:2) = 32 QL+ DoaOPo)

are similar to the sums Do, a,2", and Do, b,2".

17 A complete discussion of the analytic properties of the
elastic umtanty integral using the methods of this paper is
contained in the paper by S. 0. Aks, R. P. Gilbert, and H. C.
Howard, Technical Note BN-376 (September 1964), Insti-
tute for Fluid Dynamics and Applied Mathematics, Univer-
sity of MarylanX College Park, Maryland, J. Math. Phys.
(to be published).

18 The elastic unitarity integral is a direct consequence
of the unitarity of the S-matrix (operator) at energies below
the first production threshold. For details see: S. (. Aks,
Technical Note BN-363 (July 1964), Institute for Fluid Dy—
namics and Applied Mathematics, University of Maryland,
College Park, Maryland, J. Math. Phys. (to be published).

15 R, Omnes, Nuovo Cimento 25, 806 (1962).
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We shall show, in a sequel to this paper, on the
elastic unitarity integral, that, by applying the
extended Hadamard criteria to the funection

F(s;z) = g @1 + Dz, :(8)P(2), 3.6)
F(s; z) can be singular only whenever the singular-
ities of the kernel and those of ¢(s; z) and ¢.(s; z) coin-
cide.” This is whenever 2=z, =+ [(1—22)(1—z2)]?
and when, for each fixed value of s, the singularities
of ¢(s; z,) and ¢.(s; x.) are represented by z, = a(s)
and z, = f(s), respectively. One obtains in this case

z = a(s)8() = [1 — @) — "I (3.7

If we replace a, by a=3({141/§1), 8=3(t+1/¢2),
respectively, we may represent this as

3 e
4(1_'_;_1 §2+§_2

(3.8)

which becomes for [{4] = 1, 6, = arg ¢, (k = 1, 2),

cos 0, cos 6, =+ sin 6, sin 6,
= cos (6,[s] = 6,[s]). 3.9)

This result may also be obtained as a simplified
form of an analogous Hadamard theorem for gen-
eralized axially symmetric potentials (GASPT)* and
is also contained in the result of Nehari.” It is also
interesting to note that other results® concerning
the location and number of singularities of functions
with the representations (3.5) and (3.6) lead imme-
diately to new interpretations here. In fact if one
knows information about the partial waves, one can
obtain complete information about the scattering
amplitude singularities by using the Mandelbrojt—
Hadamard analogs.”*™*® For instance, see the note
by Gilbert and Shieh®” to see how this may be done
for the case of potential scattering.

20 See Ref. 17,

2L R. P. Gilbert, J. Math. Phys. 5, 983 (1964).

22 7, Nehari, J. "Ratl. Mech. Anal. 5, 987 (1956).

2 R, P. Gilbert, Arch. Ratl. Mech. Anal. 6, 171 (1960).

% S Bergman, J. Anal. Math. 11, 249 (1963)

2% See: R. P. Gilbert (Ref. 21).

28 R. P. Gilbert, Pacific J. Math 13, 79 (1963).

2 R. P. Gilbert and S. Y. Shieh, Technical Note BN-401
(May 1965) Institute for Fluid Dynamics and Applied

%Vla(‘ichematlcs, University of Maryland, College Park, Mary-
an
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Solutions of the Klein-Gordon and Dirac equations are obtained for a particle moving in an arbi-
trary plane electromagnetic wave in vacuo plus a uniform static magnetic field parallel to the direction

of propagation of the electromagnetic wave.

INTRODUCTION

ECENTLY Roberts and Buchsbaum' solved

the classical, relativistic equations of motion
for a charged particle moving in a particular con-
figuration of electromagnetic fields. The field con-
figuration considered consisted of a plane electro-
magnetic wave plus a static magnetic field such that
the direction of the static field was parallel to the
direction of propagation of the wave,

In this paper we show that the corresponding
quantum mechanical problem is also soluble. We
obtain solutions of the Klein—-Gordon and the Dirae
equations for this field configuration. The solutions
are exact within a framework in which the quantum
nature of the electromagnetic field is ignored; and
in which quantum mechanical radiative corrections
and the classical radiative reaction force are neg-
lected.

The quantum mechanical wavefunctions obtained
are very closely related to the classical trajectories.
For the Klein-Gordon equation, the relationship
is so intimate that the classical solutions for the
motion transverse to the magnetic field are also
valid quantum mechanical solutions provided the
equations are properly interpreted.

The problem we treat is a generalization of one
discussed by Volkov® many years ago. Volkov solved
the Klein-Gordon and Dirac equations with a plane
electromagnetic wave. We generalize this to include
a static magnetic field. It 1s interesting to note that
the Volkov solutions have recently proven useful in
studies of the Compton scattering of an electron by
a laser beam.?

Although the classical problem has already been
solved by Roberts and Buchsbaum we present an
alternative derivation of their results for the special
case when the electromagnetic wave propagates in
-—*'I‘Emrk was supported by the U. S. Army Research
Office (Durham).

1C. 8. Roberts and S. J. Buchsbaum, Bull. Am, Phys.
Soc. 9, 14 (1964).

¢ D, M. Volkov, Z. Physik 94, 250 (1934).

3L. S. Brown and T. W. B. Kibble, Phys. Rev. 133,
A703 (1964).

the vacuum. It is only for this special case that the
quantum mechanical problem can be solved. (This
is true even when the static magnetic field is absent.)
Because we restrict ourselves to a very special case
it is possible to obtain a very much simpler deriva-
tion than that given by Roberts and Buchsbaum
(who allow propagation in a dielectric medium), The
resultant simplicity facilitates comparison of the
quantum mechanical and classical solutions.

L. PRELIMINARIES

In this section we establish our notation and con-
ventions and obtain a suitable expression for the
electromagnetic field tensor.

We consider a particle with charge —e and mass
m. Units are chosen such that & = ¢ = 1. We shall
need the Dirac matrices satisfying the usual anti-
commutation relations v,v, + v,v, = 2 g,; p, » =
1,2, 3, 0. The metric tensor has signature 1, 1, 1, —1.

In considering the motion of a charged particle
with a magnetic field in the z direction it is conven-
ient to introduce the quantities  + 4. In order to
have a convenient notation for these combinations
we introduce the vectors e and ¢* with components
& = (1/v2)(1,%0,0) and e = (1/v2)(1, —3, 0, 0).
These vectors satisfy the conditions e-e = *-¢* =
and e-¢* = 1. We shall frequently need to consider
the projection of a vector in the z—y plane. We shall
call such a projection the transverse part of the
vector. In general, if a vector has components C,
then the transverse part of C' has components, ci,
given by

Ci = ee*C + ete-C. 1.1

The electromagnetic field tensor F,, is derivable
from a potential so that F,, = 9,4, — 3,4, We
write the potential as a sum of two terms distin-
guished from each other by their arguments. Thus

Au@) = Au(x1) + A,0). 1.2)

The first term on the right-hand side of Eq. (1.2)
generates the static magnetic field and is a function

1163



1164 . PETER J.
only of the transverse components of the position
vector. The second term generates the plane wave
and for a wave propagating in the z direction this
is an arbitrary function of the single variable ¢ — z
(= 6). By introducing the vector n with components
n, = (0,0, —1, —1) we may write § = n-z. Note
that n’ = n+e = n-e* = 0.

The electromagnetic field tensor may then be
written

F,, = F“,(H) + Fm(g)
= 1H(e,e* — e,¢%) + n,.dA,/d0 — n, dA,/d9, (1.3)

where H is the magnitude of the static magnetic
field.

By insisting that the potential have the form given
by Eq. (1.2) we have placed a restriction on the
permissible gauge for the potential. It will be con-
venient for our purposes to restrict the gauge even
further and we shall insist that all the vectors ap-
pearing in Eq. (1.2) be transverse.

Within these restrictions, d4,/dé is determined
by F,,. In the following we shall consider only plane
waves of finite pulse length which implies that
lim ;o d4,/d8 = 0. We may then uniquely de-
termine 4,(8) by the requirement that A,(— =) =0.
In general then A,(4 =) will exist but will not van-
ish. Although A,(8) is completely determined by
F,, there is still considerable freedom in the choice
of the first term 4 ,(x,). We shall not find it necessary
to further specify the gauge of 4,.(x,).

If the reader finds these gauge restrictions unduly
onerous they can be easily removed. It is only neces-
sary to allow an additional term 9,f on the right-hand
side of Eq. (1.2), where { is an arbitrary function of
space-time, and to multiply the wavefunctions
determined in the following by a factor exp (—ief).

In the following, all our manipulations are for-
mally covariant. The results are therefore valid not
only for the “standard” field configuration, which
we use as a basis for our discussion, but also for any
more general field configuration which may be trans-
formed into the standard configuration by a Lorenz
transformation. The general field tensor will still
be described by Eq. (1.4) except that the vectors
¢, ¢, and n are any set of vectors such that the
components of ¢ and ¢* are complex conjugates of
each other, the components of n are real, ere =
et = eon = ¢fon = n-n = 0,and e-e* = 1.* The

+ Once the field tensor F,, is known, the vectors ¢ ¢%
and n may be determined by solving the eigenvalue equation
F,,8 = AS,. The vectors ¢ ¢*, and n correspond to the
eigenvalues @A, — 4, and 0, respectively. The vectors e and
&* are then determined except for an arbitrary phase and
» is given exeept for an arbitrary real multiplier.
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field configuration then consists of the following:
{(a) a plane wave; (b) a static magnetic field with
magnitude H and a direction parallel to the direction
of propagation of the plane wave; (¢) a static electric
and a static magnetic field. These additional fields
have an arbitrary magnitude except that the extra
electric field is equal to the extra magnetic field.
The extra fields are perpendicular to each other and
to H.

II. DETERMINATION OF CLASSICAL
TRAJECTORIES

With our conventions the classical equations of
motion are

2.1)

where the dots indicate differentiation with respect to
the proper time(s). By using the expression given by
Eq. (1.3) for F,,, and noting that 4, = n-% d4,/ds,
this may be written as

Fes v
m&, = —eF &,

mE, = —ieH(ee* & — ele )
— eng-(dA/d6) + ed,.  (2.2)
Each term on the right-hand side of Eq. (2.2) is

orthogonal to the vector n. By taking the inner
product of this equation with n we obtain

nx = 0.

2.3)

It follows then, that by an appropriate choice for
the origin of the proper time, we may set

0 = as (2.4)

with « constant. The electron moves in such a way
that its “clock’ keeps time by the phase of the wave.
If we now introduce the quantity

P,(s) = mi, + teHee*x — teHeterx — ed,, (2.5)
we find that P, satisfies the equation
P(s) = —en,(dA,/do)i". (2.6)
We may then write
Pys) = Pu(— =) + n(s) @7
with
I(s) = —e(dA/d6)-i. (2.8)

Since the longitudinal parts of P, and the kinetic
momentum m#, are equal, and since n, is in the
direction of the energy and momentum vector of
the plane wave, Eq. (2.6) has an obvious interpreta-
tion in terms of the absorption of photons.

The right-hand side of Eq. (2.8) depends only on
the transverse components of z. Inspection of the
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transverse part of Eq. (2.2) reveals that this equa-
tion is formally equivalent to the problem of deter-
mining the transverse motion of a nonrelativistic
particle moving in a static field and a time-dependent
electric field. In this formal equivalence the proper
time plays the role of the nonrelativistic ordinary
time. These equations can be solved. Once the trans-
verse motion is determined, the right-hand side of
Eq. (2.8) is known and the longitudinal motion can
be obtained by an integration.

A more explicit expression for I(s) is easily ob-
tained. According to the analogy, I(s) is essentially
given by the electric field multiplied by the velocity.
As a result I(s) is the change in the nonrelativistic
kinetic energy. Guided by these considerations we
immediately obtain

1) = —i- [% SORBUEE: f(s)]. 2.10)
An alternate derivation of Eq. (2.10) starts with
the observation that #*> = —1. By considering the
longitudinal and transverse parts of this expression
separately and using Egs. (2.7) and (2.5) for the
longitudinal parts we again arrive at Eq. (2.10).
In order to complete the solution it is necessary
to determine the transverse motion. By taking the
inner product of Eq. (2.5) with ¢, and noting that
eP = ¢ P(— ») we obtain

eP(—»). (2.11)

me-x — teHe-x — eecAd =

This has the solution

€er = e—% G'P(_ CD) + C(—m)e‘mol

+ f_ ; ds’ (%)e"”""""e-A(as'), 2.12)

where C(— =) is a constant and w,(=e¢H/m) is the
cyclotron frequency. This, plus the equation for
e*-z obtained by complex conjugation, completes
the solution.

An alternative form of the solution is of some in-
terest. If we write

Ns) + Cls)e'~, 2.13)

€ex
and
ek = 1w C(s)e’ ", (2.14)

then the two unknowns A(s) and C(s) can be deter-
mined in terms of ¢-z and ¢+£. This form is of some
interest in that A and C constant corresponds to the
solution without the radiation field. In this case A
locates the guiding center for the orbit and C gives
the radius and phase angle for the orbit. The proper
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time-dependent A and C may then be interpreted as
instantaneous values of these quantities. We find

Ns) = (i/eB)P(— »)-e + (ie/muwo)Alas)-e (2.15)

and

Cls) = O(—=) —

ie * ? ,—iwos’ i_ . ’
— f_m a7 e Afes).
(2.16)

Thus, A and C have finite limits as |s] — « which
represent the final position of the guiding center
and the final radius and phase of the circular orbit,
respectively.

The relations

Me) = M—=) + (le/muwo)e A() 2.17)

(=) = C(—=) —

7:6 re ? —fwos’ _i . »
mwo./-_m ds’ e ds,eA(as)
(2.18)

constitute the classical scattering matrix.

It is easy to see from these relations that it is
possible to have a resonance. Consider a right cir-
cularly polarized plane wave which is sinusoidal
with frequency w for a period of time T'. For such a
wave the electric field is rotating with the same sense
as the electron. While the field is on e-A will have
the form e-4 = |erAle’*** with |e-A| a complex
constant. For those electrons with an initial momen-
tum in the z direction such that the Doppler-shifted
frequency is equal to the cyclotron frequency
(wo = w,) we will have

C() = C(—=) + (¢/m)T le: A].  (2.19)

The radius of the circular orbit increases linearly
with the time T that the wave is present. {For T
sufficiently large that the second term in Eq. (2.19)
dominates.] The energy then goes up quadratically
with T'. It is interesting to note that the change in
the position of the guiding center goes as the zeroeth
power of T, depending only on the net impulse.

III. KLEIN-GORDON EQUATION
The Klein—Gordon equation is
{m® + [—i0 + eA(x)) + eA(O)'}®@) = 0. (3.1)

Since the coefficients depend only on x, and 4,
solutions of the form

®(z) = d,(x,, O™ 3.2)

exist. Without loss of generality we require that p
be longitudinal. We also introduce the operators
m, = —18, + eA,(x,). In the absence of the radia-
tion field, these operators represent the kinetic mo-



1166 PETER 1J.
mentitm of the particle. They satisfy the commuta-
tion reldtions

[”u; 7l',] = —iEan(H)- (33)

In order to facilitate comparison with the classical
solutions we replace the variable ¢ by the proper
time, 8, defined so that

8 = np/m = as. (3.4)

We then have

R 2
[mﬂ +(p—in e el (a)) ]cbp = 0.
(3.5)

This may be rewritten in the form
0 pl 1
[1 ds T 2m  2m

with p? = —(m’ + p°). In complete analogy with
the classical situation, this is the Schrédinger equa-
tion describing the nonrelativistic motion of a
charged particle in a static magnetic field with an
additional time-dependent electric field present.

We will solve Eq. (3.6) by making a suitable trans-
formation. It seems appropriate to indicate the rea-
soning which led to the selection of such a transfor-
mation. The quantum mechanical problem is most
casily solved in the Heisenberg representation. In
this representation the classical equations of motion
are also true quanturm mechanically. Because the
equations are linear, the classical solutions given
by Egs. (2.15) and (2.16) are also valid quantum
mechanically provided \(s), C(s), M— =), and
C(— =) are treated as noncommuting operators.
Since A(s) and C(s) satisfy the same commutation
relations as A(— =) and C(— «) the operators at a
time s are related to the operators at a time — = by
a unitary transformation. By going from the Heisen-
berg representation to the Schridinger representa-
tion it is found that the same unitary transformation
serves to solve the Schrédinger equation. Rather
than go through this lengthy procedure we introduce
the appropriate unitary transformation as an ansatz.

If K(s) is a transverse vector the following identi-
ties hold:

(Ko iR 1
eE T rle T = gl — eF (K’

(711 + eA(as))z]fb,, =0, (3.6)

3.7

_;K.,_.Q_ .'_2'“ v
e =i K - SRR DK (38)

The combination ¢** *®, then satisfies the equation
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[ii + Ker — SK-F@H)K + 22
ds T2 2m

%n (‘h — eF(H)-K + eA(as))z:IeiK'"fb,, =0.(3.9
We now determine K by the requirement that the
terms linear in 7 drop out of Eq. (3.9). This leads
to the classical equation

mK, = —eF,,(H)K’ + eA,(as). (3.10)

The condition K(— «) = 0 then determines K com-
pletely. The component ¢-K is given by the third
term on the right-hand side of Eq. (2.12) and ¢*-K
is obtained by complex conjugation.

When the terms linear in = have been eliminated,
it is found that the equation separates so that

2
s

J(s) = f_ 'w ds’ [‘% K(s')-F(H)-K(s')

- J(s)}“"'qa,, =0, (3.11)

with

+ 2-% (-—eF(H)-K(s’) + eA(as'))z], 3.12)

and

(ri — pDe®"®, = 0. (3.13)

The separation constant has been determined by
demanding that p be the incoming longitudinal mo-
mentum. This implies that lim,._, 8®,/ds = 0.
These equations are now quite tractable. In parti-
cular Eq. (3.13) describes a particle in a uniform
static magnetic field. This is a problem which has
been discussed by many authors. We give a brief
sketch of the procedure by which solutions to Eq.
(3.13) are obtained and then quote the results.
One proceeds by noting the relation

[e*em, eem] = eH. (3.14)

This is the commutation relation for annihilation
and creation operators. If ¢ > 0 then €*.r is the
annihilation operator and the ground state is deter-
mined by

e*r¥y(x,) = 0. (3.15)

This is a first-order partial differential equation
which separates if A(x,) is a linear funection of x,.
Once the ground state has been determined the
excited states are given by

V,(x,) = () HH) ™ (e m)Wo(x,),  (3.16)
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Since

. = eomeT + eow For (3.17)

the allowed values of p are given by

pi = (2n + 1)eH. (3.18)

The separation constant which occurs in the course
of solving Eq. (3.15) provides an additional quantum
label for the state vectors which we do not indicate.
The additional quantum number may be chosen in a
large number of ways. For example it may be the
2 component of the angular momentum. The infinite
degeneracy associated with this extra quantum label
arises because of the invariance of the statement of
the physieal problem under transverse translations.
(Equivalently, the degeneracy arises because the
location of the guiding center is a constant of the
motion.)

Our discussion follows very closely the work of
Johnson and Lippmann.® We refer the interested
reader to their paper for a more complete discussion
of the degeneracy and for explicit forms for ¥, (x.).

A complete set of solutions of the Klein—-Gordon
equation, Eq. (3.1), is then given by

&(p, n, )

IV. INTERPRETATION OF SOLUTION TO
KLEIN-GORDON EQUATION

= e ey (x,). (3.19)

The solution of the Klein-Gordon equation ob~
tained in the last section is formal in that the com-
bination ¢ **"¥,(x;) must be evaluated. In this
section we obtain two expressions for this quantity.

The expression K« is the sum of two terms which
do not commute with one another, that is

Ker = —iK-3 + eK-A(x,). 4.1)

The following simple trick® is useful when it is neces-
sary to evaluate the exponential of a sum of non-

commuting operators. Consider the operator G(A)
defined by

G(\) = exp [—AK+3 — 1eAK-A(x,)] exp AK-9.
4.2)
By differentiating this with respect to A we obtain

s M. H. Johnson and B. A. Lippmann, Phys. Rev. 76,
828 (1949). A bibliography of the earlier work on this problem
is contained in this paper. Our notation and conventions
have been chosen so as to be consistent with this paper
except that weset & = ¢ = 1.

8 This trick of introducing a parameter and then examining
the equation obtained by differentiating the parameter pro-
vides a simple means of proving the various identities in-
volving exponential operators that we have used.
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7Y = exp {-—-D\K'a 4 ’l:e)\K'A(x.L)]}

X [—veK-A(x,)] exp A\K+9). {4.3)

Using the relation

exp (—AK-9)A(x,) exp (+AK-9) = A, — AK)
(4.4)

this can be written in the form

AG(N)/ON = G [—1eK-A(x, — NK)]

with the solution

(4.5)

G(\) = exp [-— ie ' dN K(s)- A(xy — )\'K)j’. 4.6)

Setting A = 1 we then obtain

e—ik'*\I,u(xi) = G(1) exp (—K-)V,(x,) = exp [—1e

X f "N K@) AGx, — MK)] X Tz — K@), @)

It is interesting to verify that this expression has
the proper transformation properties when a gauge
transformation is made. If A,(x,) — A,(x,) +
d,f(x,) then the wavefunction ®(x) — e **“&(x).
Now ¥,(x.) has the required transformation prop-
erty but ¥,(x, — K) does not. However, the argu-
ment of the exponential in Eq. (4.6) contains the
term

—ief d\ K+ 9f(x, — \K)
0
1
. d
= e fo NS e, — AK)

= ie(fx. — K) — fx.)),

which is just what is needed to restore the correet
transformation properties.

It is also possible to express ¢ **'*¥, as an ex-
pansion in the functions ¥,. In order to do this we
note that

4.8

Ko =Keeetr 4+ K-e* errr (4.9)
is the sum of an annihilation and a creation operator.
With the aid of the identity

A(A+B) AA _\B

e = Mg e—ik'lA'Bl’

(4.10)
valid when the commutator of 4 and B commutes
with 4 and B, we may write

—iKerx

= e

~iKve* e're——iK'c €* -re—}aHK’ .

(4.11)

By expanding each of the two exponentials and using
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the matrix elements of the annihilation and creation
operators, one obtains’
e_‘K.r‘I,n(x.L)

— tenre  (—iK €)' (—iK -9 (eH)Y
R > k!

nin'!

X ((n “ i

where the summation runs over integral values of
j, k, and n’ subject to the restrictions that n — & =
n’ — j and that the arguments of the factorials are
all nonnegative. It is interesting to observe that if
the system is initially in the ground state the prob-
ability, P,, that it will be in a state n is given by the
Poisson distribution

P, = (ReHK*"(1/nhe #7%",
V. DIRAC EQUATION

H
_ ])!> \I,n’(x.L)) (4'12)

(4.13)

The Dirac equation is, with our conventions,
[m — iv(—173 4 eA(z))]® = 0. (6.1)

Any solution of the Dirac equation also satisfies the
equation obtained by multiplying on the left with
[m + iv(—19 + ed)] so that

[m® + (—id + eA@)® — Yev,v,F¥]2 =0. (5.2)

QOur procedure shall be to first find a complete set
of solutions to Eq. (5.2). We then find the linear
combinations of these solutions which asymptoti-
cally satisfy the Dirac equation (5.1). It is easily
seen that these linear combinations then satisfy
the Dirac equation for all times.

As in the case of the Klein—Gordon equation we
may take solutions having the form

P(z) = d,(xy, 9). 5.3

We make the same transformations which were sue-
cessful for the Klein-Gordon equation to obtain

. H
[2"”6% —pl 4wl + % (yeye* — ve*ve)

' - -Zf myA(as):]e"e‘K"Q, =0. (54)

Now the combinations o,, = (1/20)(v,v» — ¥r7,)
are the well known relativistic generalizations of the
Pauli spin matricies. The expression 8 = 3(yeye* —
ye*ye) is simply the component of the spin matrix

7 This structure occurs in any problem which is equivalent
to & quantum harmonic oscillator driven by a classical force.
The result is derived by J. Schwinger, Phys. Rev. 91, 728
(1953) in connection with electrodynamics with a classical

current. He shows that polynomials involved are related
to Laguerre polynomials.
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in the z direction. As ynyd = —yAyn the o,, also
appear in this term. Since the term ynyA vanishes
asymptotically we may choose solutions of Eq. (5.4)
which are asymptotically eigenfunctions of 8 with
eigenvalues +1.

The equation separates with the separation con-
stant determined just as in the case of the Klein—
Gordon equation. We have

[p? — (r] & eH)}e'e*"®% = 0 (5.5)
and
[2mi 9/8s + eH(S F 1) — (ie/a)yynyA(as)]
e Td = 0. (5.6)

The eigenfunctions and eigenvalues of =} have al-
ready been discussed. The allowed values of p?
are then given by®

pl = 2neH. 6.7

A complete set of solutions to the Dirac equation
is then given by

@(p,n’ z) = eI =iE T
X ¥, (x)f+(8) + V.(x)f-(9)}, .8)

where f. are spinors determined by Eq. (5.6) and

the requirement that the right-hand side of Eq.

(5.8) satisfies the Dirac equation asymptotically.
The equation for f.(s) is

2mi.f+ = [eHve*ve + (ie/‘x)Yn’YA.-]fi-- (5.9)

The form of the solution can be determined by solv-
ing the equation by iteration starting with f, on
the right-hand side approximated by a constant
spinor u. satisfying 8 u, = u,. Now it is readily
seen that 8 u, = u, implies yeu, = 0. As a result
we find that f, has the form

f+(8) = [1 + ynve*R(s)]u. (5.10)

with R(s) a scalar function of s. Substituting this
into Eq. (5.9) we obtain, after some manipulation
of the v matrices,

[2miR — 2¢HR — (ie/a)e- Alynyetu, = 0.  (5.11)
This can be satisfied nontrivially only if
R(s) = _é%aemu f—w ds’ e~ d_%? e As’). (5.12)

The same procedure applied to f- leads to the
solution

- = (1 4+ R*nve)u_. (5.13)

8 M. H. Johnson and B. A. Lippmann, Phys. Rev. 77,
702 (1950).
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The functions R and R* also occur in the classical
solution where they describe the radius and phase
of the circular orbit [see Eq. (2.16)].

In order to complete the solution it is only neces-
sary to determine the correct linear combination
which asymptotically satisfies the Dirac equation.
Suitable choices for the appropriate linear combina-
tions of u, and u. can be obtained by using Egs.
(25), (30), or (32) of Ref. 8. If this is done the results
will not be in an explicitly covariant form. Use of
the results of Ref. 8 corresponds to a choice of rep-
resentation of the Dirac matrices given by

. 1, o __ (o, 4
Yo =18, 8= (0, —1)’ Y= ’(a, 0)'

An explicity covariant solution is also possible.
The asymptotic form of the Dirac equation is

(5.14)

In order to treat this equation we require a rep-
resentation of the Dirac matrices. A convenient
representation is obtained by considering the spinors

satisfying

(m _ i’Yp - i’YTJ_)q)A(xl) = 0.

Su(\, o) = ou(, o), (5.15)

and
7psu(>‘a 0’) = 'D\("Pz)*u()\; o'); (5'16)

where \ and o take on the values #1. In this rep-
resentation yp is also diagonal. The combination
vp8 is more convenient since it commutes with both
vp and yx,. These spinors may be used to form the
basis for a representation of the Dirac matrices.
The representation is not unique since the relative
phases of the different (), o) are arbitrary. By choos-
ing an explicit representation the relative phases are
specified.

It is convenient to introduce the quantities
x(n, \, o, X,) defined by

xtn, A, +1,x,) =¥, &)uly, + 1) 5.17)

and

X(n) )‘; - 17 xJ.) = \I’n(xl)u()\y - 1)- (518)

It is also simpler to introduce the vector g defined

uniquely by the conditions

gre = q-e* =gq*p = 0 (519)
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and
g:n = pn = ma. (5.20)
It is readily found that ¢* = —p® and
n, = (me/p")(p, — q.). (5.21)

A completely satisfactory representation of the
Dirac matrices is then given by:

yrx(n, N, ¢, 1) = 2neH)x(n, \, —0,x.) (5.22)

vox(n, N, o, 21) = {(=p) (i, \, 0, %,) (5.23)
vex(n, N, +1,x,) = ye*x(n, \, —1,x,) = 0 (5.24)
vyex(n, N, —1,%,) = V2x(n + 1, \, 41, x,) (2.25)
ve*x(n, N, +1, x,) = vV2x(n — 1, ), —1,%,) (5.26)
and

ygx(n, \, o, x,) = a(—pz))x(n, —\, 0, X,). (5.27)

In this representation the Dirac matrices are self-
adjoint if the adjoint (1) is related to the Hermitian
conjugate (*) by

t

Yo = =D YYD = v, (5.28)

The asymptotic solutions to the Dirac equation
then have the form

®*(p, n, \, x,)
= ax(n, \, +1,x,) + bx(n, \, —1, x,)
and the Dirac equation reduces to
(m 4+ X V= pYa — i@neH)*b = 0 (5.30)

(5.29)

and
—i@2neH)la + (m — A V= p%)b = 0. (5.31)
The equations are consistent only if p? = —(m® +

p®) = 2neH which is the result we had previously

obtained in Eq. (5.7). For correct normalization

we must choose a and b so that |a|* + [b]* = 1.
Finally, the solutions of the complete problem are

qD(p, n, A, )
= ™ + Rynye)ax(n, ), +1, x,)

+ (1 + B*myebx(n, N, ~1, x,)]. (5.32)
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A deductive procedure is presented for obtaining the solution of the integral equation for V'8 scat-

tering in the Lee model.

SOLUTION of the Killén~Pauli integral equa-
tion' for V@ scattering in the Lee model® was
presented recently by Kenschaft and Amado.** In
this note we describe a deductive procedure for ob-
taining this solution and for demonstrating its
uniqueness.
The equation may be written in the form

1 17,, o'
Yw) = —;—;j; dw o T
% Im K+(¢'~”) lﬁ(&)') (1)

K.w —&)e +w—w, —20°

where p > 0 and where K,(w)® is the boundary
value K(» + #0) of a function of a complex variable

K(z) given by
K@ =1 +f;fwdx-~g<—x)——

z(x — 2)

The real function U{z) is continuous on the interval
of integration and approaches zero at both ends
thereof so that U(z) = O[@® — )Y for & — u
and [ dz[U(z)/z] < . It is also such that K(z)
has no zeros in the complex plane. The domain
of “physical” interest for the real parameter w, is
v < wy < o, We will first solve the equation for
the simpler case 0 < w, < p, however, and then
indicate how the method is applied to the “physical”
situation.

We see that for 0 < w, < u Eq. (1) is a non-
singular Fredholm equation with square-integrable
kernel for the funetion ¢{w) on the interval w, — u
< @ < . The solution in this interval is thus
unique. We use Eq. (1) to extend the range of de-

* Research supported in part by a grant from the National
Science Foundation. .

1 G. Kallén and W, Pauli, Kgl. Danske Videnskab, Selskab,
Mat.—Fys. Medd. 30, No. 7 (1955).

2T, % Lee, Phys. Rev. 95, 1329 (1954).
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5 In the notation of Ref. 3, Ki(w) = h(w)/w.

finition of ¥(w) into the rest of the complex w plane.
It is clear that y(w) is then an analytic function
of w except for a pole at @ = 0 with residue —1 and
a cut extending along the real axis from — o to
wo — u. The discontinuity across the cut is given by

@) [ + 90) — Yo — 0)]

we — o Im K, (0w — w)
K {w)
07 w > W — M.

@
Referring to Fig. 1, we sce that Eq. (1) may be

- w y&({og*—m), wao—#

Cz

©

Wo—tw

—— &C

Wo-id w,

Fi1a. 1. Integration contours for wy < a.

written in terms of a contour integral:

K(w') VACH)
x K(we — &)o' +w — wp

It follows from Eq. (1) that ¢(w) = O(|w]™) as
w ~— « along the positive real axis, and indeed
that ¥(w) = O(Jw|™") for © — ® in any direction
in the complex plane. The contour C; may then be
deformed so as to yield integrals along C,, C,, and
C, together with a vanishing contribution from a
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contour at infinity. We obtain by this procedure

Wy — W K((I)o _ O))
‘/’(w) + © K(O)) \0(‘*’0 - (.0)
1, eKe)ye)
.w w
l wo—g , ' K(w') _1—
+7r./;a, deo wo — & o tow — w20

Y(w' + 70) Y — 10)

where, for convenience in what follows, we have
moved the contribution arising from C; to the left-
hand side.

Consider for a moment the function

w K(w, — w)
K@ @)

According to Eq. (2), L(w) has no cut for w < g,
but can be discontinuous for w > u. Except for a
pole at @ = 0 it has no other singularity and is
O(Jw]™) at . The function wK(w)L(w) then has
a possible cut for w > g, no pole, and goes to a
constant at «. But according to the construction
of Eq. (4),

L) = ¥) + = Wlwo — ).

wK(w)L{w) = (wg — 0)K(wy — w)L(wy — w),

80 that wK(w)L(w) cannot have a cut at all, is thus
an entire function, and is indeed just a constant,
as dictated by its behavior for large |w|. Evaluating
the constant in terms of L(w,) we obtain

L(w) = [(wo)weK(wo) — 1/wK(w).  (5)

In arriving at Eq. (5) we used the statements
lim,.,, (0 — wo)P(w — wy) = —1and K(0) = 1.

We now observe that Eq. (3) provides an expres-
sion for the discontinuity of the function

Qo) = —¥(w — w)/K(w)

across the real axis in terms of the known dis-

Ce

©

Wo-

. 3.
) (=

o -1 'y

Fi1a. 2. Integration contours for g < wo < 2.
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continuity of L(w) as follows:

\p(wq)woli(wo) ~1im [ % 1@}

Wy — @

1
= - K(“’O_w)éz

X [Qw + 10 — Qo — )], w 2p.

According to its definition Q(«) has no cut for w < g,
has a pole at w = w, with residue —1/K(w,) and
is O(lw|™) at . Thus we may use the Cauchy
integral theorem to express @(w) in terms of its pole
and the discontinuity across its cut and so discover
that

vy = Bl 2
+ [YwwK(wo) ~ 1]K(w, — 0)A@w),  (6)
where
Al) = %[,mdw’w' — :’o + w wy —1 W
1 1 )

X Kl = ) P K@)

The value of ¥(w,) may be found by solving the
algebraic equation obtained from Eq. (6) by the
substitution @ = w,:

_ 1 _ 2A(wr)) .
Ylwo) = wolK(we) 1 — weK(wo)A(wo)

We obtain, consequently,

¥ = —Kw — o)

X [le<wo) +

24(w) .
1= woK(wo>A<wo>] ®

If 1 — woK(we)A(ws) = 0, Eq. (1) has no solution

C»

©

Wo-Ww

on-u és)“’o G
=

L

F1c. 3. Integration contours for 2u < wo.
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by the associated homogeneous equation does. This
would correspond to a bound state in the V8 channel.

We note that the same procedure we have illus-
trated will work for 2u > w, > u. Now however,
wo has moved above the right-hand cut as in Fig. 2,
as demanded by the denominator w, — o’ + 0
in Eq. (1). And for w, > 2, ¥ () is discontinuous
within the interval of mtegratlon of Eq. (1). Then,
according to the denominator ' + w — w, — 0
we are to interpret ¢¥(w’) as ¢ (o’ — 40) so that the
integration contours are as in Fig. 3. In both cases

CHARLES M. SOMMERFIELD

everything goes through as before except that in
Eqgs. (7) and (8), w, as it appears in all places
except in the denominator o — w, + w, is to be
interpreted as w, + 0.
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functions analytic in the forward tube. Under these conditions a sequence of such distributions may
converge in Borchers’ topology. The necessary and sufficient conditions for such convergence are
spelled out in terms of the corresponding analytic functions. The two cases with and without the
assumption of the spectral condition are separately treated. A discussion of other topologies and some
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I. INTRODUCTION

ET ¢(z) be a quantum field,' so that smeared

with a test function f in &, it yields an operator
¢(f). We can then ask when the field ¢(f) and the
theory it describes can be approximated, either by
a sequence of fields or by some other method. In
order to discuss the approximation it is necessary
to introduce a topology into the space in question.
We first must decide on a suitable approximation
concept, and toward this end we consider a few
examples.

(1) Let ¢(f) and ¢;(f) be fields all of which
satisfy the Borchers—Zimmermann growth condition®
with radius of convergence greater than R, Then
for all real test functions f € D, the closure of each
of the operators ¢,(f) is self-adjoint. Thus, we might
say that ¢; approximates ¢.. (ultra) weakly, (ultra)
strongly or uniformly if, for all real f € D, the

1 R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics and All That (W. A. Benjamin, Inc.,, New York,
1964), Chap. III.

2 H. J. Borchers and W. Zimmermann, Nuovo Cimento 31,
1047 (1964).

corresponding unitaries U;(f) = V¢ =" con-
verge to the identity in the respective operator
topology as j — o. Furthermore, we know from
the Borchers—-Zimmermann condition that for ¢,

, t, in some sufficiently small polycircle, then
for all j the vacuum expectation functionals

(‘po, ei¢i(txf1+"'+lufn) ‘po)

are holomorphie functions in ¢, - - -,
convergence of

t.. Since weak

()

to the identity implies the convergence of the vacuum
expectation functions, we know from the analyticity
that the coeflicients {(¢;(f,) ¢;(f.)) tend to
(@(f1) *** du(fn)) as j tends to . However, the
converse statement is not true; convergence of the
Wightman functions one by one in ©’ does not imply
weak convergence of the U,, nor even convergence
of (Yo, €¥,). In fact, if each (Y, &*'y,) is
analytic for all » with a radius of convergence in ¢
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weak convergence of the U,, nor even convergence
of (Yo, €¥,). In fact, if each (Y, &*'y,) is
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greater than R, then a necessary and sufficient con-
dition for (Yo, e ¢y) — (Yo, €'*="'y,) is that the
Wightman functions (¥, ¢,.(f)™¥.,) converge to
Wo, ¢=(f)™¥0) uniformly in m as n — « . The relation
of convergence of the Wightman functions to con-
vergence in any of the above operator topologies
is not clear.

(2) The ¢, may be fields but not self-adjoint. In
this case the unitaries U; could be replaced by a dis-
cussion of convergence of the Stone matrices® corre-
sponding to ¢;, in one of the above topologies. How-
ever, these operators are even farther removed from
the vacuum expectation values or other computable
matrix elements.

(3) A weaker notion of convergence has been dis-
cussed by Borchers.* He introduces a topology
directly on the space Z of sequences of test functions,
so that Z is a locally convex, separable, complete
space. The bounded sets of = have only a finite
number of nonzero components, so that an element
T of the dual 2’ when applied to f € = will be a
finite sum of functionals in &’ applied to test fune-
tions in &. Hence, a sequence 7, C Z’ will converge
as n — o to 7. in the weak topology of 2’ if and
only if each element T, , of &}, converges as n —
to an element 7', . of &,. Here

T,. = @ Tk.,‘.
k=0

As in &', this implies convergence in the strong
topology of Z’.

This notion of convergence is useful, since X’ is
complete. Then a Wightman functional W € 2’ is
defined as one which satisfies

Lorentz

imvariance: W((a, A)g) = W(g);
Spectrum: W(g) = 0, Vo E Mse; (W)
Locality: Wi(g) =0, vg E1;
Positivity: W(g* Xg) >0, vy

These conditions and uniqueness of the vacuum
allow the construction of a Hilbert space and a field
operator with W as Wightman functional.'** Since
2’ is complete, if {W,} is a sequence of Wightman
functionals, and {W,} converges in =’ to W. as
n — «, then W, also satisfies the conditions to be
a Wightman functional, and hence has a correspond-
ing field.* Actually, if only any one of the above
conditions (W) is satisfied for a convergent sequence
of functionals {7,} C =’, then the limit also satisfies

* M. H. Stone, J. Indian Math. Soe. 15, 155 (1951).
4 H. J. Borchers, Nuovo Cimento 24, 214 (1962), Appendix.
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this condition, positivity for example. Thus, we can
speak of approximations of a field theory by dis-
tributions which do not have all the properties
necessary to give rise to fields.

As mentioned above, the necessary and sufficient
condition for convergence in =’ is convergence of
each component distribution 7, € &}, of the
sequence T, € =’, where T, , is a distribution in
k vector variables of ! components and each con-
verges in &},. The purpose of this note is to translate
convergence of these functionals into convergence
of the holomorphic functions, the Wightman fune-
tions, which give the distributions as boundary
values. That is, we spell out the induced topology
on the analytic functions. A more general case will
be considered than the one analyzed in Ref. 4; we
only require temperedness of the distributions, and
the fact that they are boundary values of analytic
functions. Then the spectral condition is formulated
and we give two conditions on the convergence of
the analytic functions depending on whether or not
the distributions obey the spectral condition. In Sec.
3, a number of examples of applications are given
for the theorems, some of which prove other prop-
erties of the limiting functionals than the four men-
tioned above.

We note that every Wightman functional W € =’
can be expressed as

W= @W}c,
k=0

where W, is the distribution boundary value of a
function analytic in the tube T** = R* — <L
The necessary and sufficient condition for conver-
gence of a sequence of such W, (and hence a sequence
of such W functionals) will be given in Theorem 1.
Hence, it is possible to put a topology on the space
of analytic functions having Wightman functionals
as boundary values by using this criterion of con-
vergence. This topology will give this space of an-
alytic functions a structure which is topologically
equivalent to the structure on W M\ =’ analyzed
by Borchers in Ref. 4. Therefore, Borchers’ theorem
A6 shows this space of analytic functionals is
complete.

II. EXCHANGE OF LIMITS

Notation: We consider distributions in ml var-
iables consisting of m l-vectors. The scalar product
zp will be taken to mean

m I-1

3D SELEEN

t=l u=0

where u indexes the components of a given vector
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and 7 the different vectors. In Theorem 1 we restrict
the support of T, (denoted from now on by ‘‘supp
T.”) to lie in T. For each set T we define T to be
the dual of I' and those points such that

T={z;zp >0 forall p € T}.

Note that for all T, T is a convex cone. In ordinary
applications, T' would be the direct product of n
forward light cones, I' = V%" In this case T' = T.
We also denote the Euclidean length of a vector by

m  I=1

ol = 25 20 Ja' 7%

i=1 u=0
In general we follow the notation of Ref. 1, Chap. 2.

Definstion 1. Speciral Condition: We say that a
sequence of tempered distributions {7,} obey the
spectral condition if there is a compact C and a T
such that the interior of T is nonempty, and (supp
T,) C (' U 0C) for all n. Note that C allows us
to extend the support of our distributions outside
T but only in some fixed compact. In one dimension,
for instance, we could take I' = {p;p > 0}, C =
{p; —a £ p < a} so the support in p can run
down to —a.

We can now state the following Limit Theorem
with Spectral Condition:

Theorem 1. Let F, be a sequence of tempered
distributions such that the Fourier transforms
FF. = T, have support in T' \J C. Then if T is
nonempty, F, is the boundary value of a function
F., holomorphic in £ = R™ — ¢T. Suppose that
{F,} is a weakly bounded set in &’, that is, for
each f € &, F,.(f) is bounded as n varies. Then
the holomorphic functions are uniformly bounded
in the sense that for each compact x of T there is
a polynomial P, and an integer r such that for all
£ for all ¢ in the range 0 < ¢ < 1, and for 5 € &,

[Fu(& — itn)] < P(&)/T (1)

independently of n. Moreover, if for all f € &,
F.(f) — F.(f) as n — o, then the analytic functions
F.(¢ — in) converge to F.(¢ — 5) uniformly on
all compacts in §.

Conversely, let F, (¢ — i) be a sequence of func-
tions holomorphic in the tube & = R™ — <T.
Suppose that for each compact « of T there is a
polynomial P, and an integer » such that for all £
for all ¢ in the range 0 < ¢ < 1 and for 5 € «

|F.(¢ — itn)] < P.(&)/¢

independently of n. Then as 5 approaches zero in
the interior of T, F,(§ — 74) has a tempered dis-

ARTHUR JAFFE

tribution boundary value F,, and as n varies, F,
varies over a strongly bounded set of &’. In addi-
tion, if the analytic functions converge pointwise,
F.(t — in) — F.(t — iy) for all £ — iy in &, then
the boundary values F, converge to F.. in the strong
topology of &', that is the convergence is uniform
on bounded sets of &.

Proof. Suppose that {F,} is a weakly bounded
set in &'. Thus, by the theorem of Mackey® it is
bounded in the strong topology of &’, that is bounded
on bounded sets of ©. Let the seminorms which
define & be given an increasing order, |/f|; < [[fl[:+
and let ©; be the space of functions with finite
i-norm. Then &; O &,,, and every bounded set
of & is contained in some &/ and is bounded in
norm in this space.’ Thus we know that the F,
are equicontinuous, that is, there exists a given semi-

norm || ||; and a constant C such that for all f in
& and independently of n
IF.(N < C [Iflls 2)

On the other hand, it is shown in Ref. 1 that the
Fourier transform of F,, T, = §F,, has the property
that it can be written

e 7'T.(p) = a(p; 7)S.(p), 3)

where

M -1
a<p’ 7’) — e—pn{; e—-m).}
with 5, € T and 7 in the convex hull of the #,.
In this form a(p; 7)) € &,, S, € &..7
Thus, S, = {2 2, ¢*}T,. Since supp T, C
T' U C, it is possible to choose k(p) so that h(p) = 1
if p &€ 'V Cand

M
h(p){; e—pm} c .
Hence

8, = h@){g; e'”'}%Fn €Y

and as F, varies over a strongly bounded set of &,
so does S,. This follows since both Fourier trans-
formation and multiplication by an element of &
are continuous linear transformations from &’ to
&'. Hence, by estimate (2) for bounded sets we

5 N. Bourbaki, Espaces Vectorials Topologiques (Hermann
& Cie., Paris, 1955), Chap. IV, p. 70, Sec. 2, Theorem 3. See
also L. Schwartz, Théorie des Distributions (Hermann & Cie.,
Paris, 1959), Vol. I, Chap. III, Sec. 2 and Vol. II, p. 91.

¢ I, M. Guelfand and G. E. Silov, Les Distributions (Dunod
Cie., Paris, 1964), Vol. II, page 45, Theorem 2. See also Ref. 5.

7 Streater and Wightman, Ref. 1, p. 55-56.
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know there exist a constant C and integer ¢ such
that for all f & & and independently of n

1SN < C Al %)
By taking f(p, £, n) = a(p; n)e’>? we have
S8.(f) = F.(¢ — in) (6)
and so
[F.(¢ — )| < C |la(p; me™|].. (7

Furthermore, as 5 varies over a compact « in the
cone T, and 0 < ¢ < 1, we have from (7) that
there is a polynomial P, and integer r such that®

[F.(¢ — dtn)] < P£)/t". ®

This proves that the F, satisfy a uniform bound.
If, furthermore, F, converges weakly to F. in &,
then since f = ae™ € &, we know that S,(f)
converges to S.(f) as S, is a continuous function
of a convergent series F,. Hence,

|Fa(¢ — itn) — Fo(t — itn)]
= [(S. — S=)alp; t)e™)] — 0. (9)

Thus, F.(¢§ — 75) converges pointwise in the tube
§ = R" — iT. However, (8) gives a uniform bound
on all compacts in § and thus by the Vitale con-
vergence theorem,’ F,(t — 4n) — F.(¢ — in) uni-
formly on all compacts in the tube.

Conversely, suppose that the F,(( — i) are
holomorphic in € and satisfy bound (1) for 5 in
a compact of T' as deseribed above. Define the
sequence of functions

G (¢ — itn)
= [t [T [T kg - it 0

Forn € I,0 <t <1, F,(t — 1iy) is holomorphic,
50 G!™ is also holomorphic in the tube. Furthermore,
for 5 € «, estimate (1) yields the bounds

1G™P¢ — it < V d;,) thd‘?

x)[“"anm@—ﬁmﬂr~n

< |P®l/1
1G."(¢ — itm)| < |Pa®] |log ¢
IG2" V(¢ — itm)| < [Pu®)]

|G — itn)| < [P®)].

(11)

8 Streater and Wightman, Ref. 1, p. 62.
® L. Bieberbach, Lehrbuch der Funktionen Theorie (B. G.
Teubner, Leipzig, 1921), Vol. I, p. 165. This proves the
theorem in one variable. A similar proof holds for n variables.
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Also
IGY ™ (¢ — it) — G2 (@)
¢
= |[ @16y 06 — itn)| < tIPOL (12)
0

Thus, for any g(¢) € &, and 0 < ¢ < 1, it follows
that for n € «, and for any polynomial Q(£) we have

[ 60 — itnat0 as

G2 — i) 1 }
< S‘?’{ 1+ PO 1+ Q0]

x [ a1+ PR+ N el 13

The integral converges for ¢ € & and is independent
of n. Furthermore, since a polynomially bounded
function is a tempered distribution, there is a semi-
norm || ||; so that the integral is majorized by
C |lg|l;- On the other hand, estimate (11) shows
that the sup term is less than one. Hence

< ¢ |lgll..

[ 66 — iy i (14)

Furthermore, estimate (12) shows that as ¢t — 0,
so does

f I:Gym(‘f — ity) — Gj'*”(s)]g(é) dt—0 (15)

so that

e 0e0 | <clgll. a0

Let us choose
-1

9 = 2

»=0

. ”—i)r-l»?
(w P 1[63)
for any f € &;. Then, for 0 < ¢t < 1,

[ i — itnge) de = [ Rt — itnf® .

We know that the left-hand side has a continuous
boundary value as ¢ — 0, as does the right-hand
side. Thus

G,(.HZ)(Q) — l‘i—l:rol f G7(|r+2)(£ _ Zh,)g(s) ds

= tim [ R — i@ & = F.0).

Hence, for all f in &, we know from (16) that there
exists a constant C and norm || ||, such that

IF.(0] = 167"2(9)] < C llgll: < C Il

17

(18)
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independently of n. This proves that F, is a strongly
bounded set in &’.

Let us suppose that F,(¢—1n) converges pointwise
in the tube  to F.(t—15). Since (1) gives a uniform
bound for F,.(§ — in) as §¢ — 1y varies over any
compact in the tube, we have from the Vitale con-
vergence theorem’ that F.(¢ — 47) converges to
F.(¢ — 73) uniformly on compacts in the tube.
Hence, G{"**' (¢ — ity) converges to GU 2 (¢ — 1ty)
uniformly on compacts in §, since the G’s are
primatives of a series which eonverges uniformly on
compacts. We consider

[ 16526 — itn) — GE*2 — itm)}g@® ds! (19)

which is majorized by estimate (13) with G!*?
replaced by G;** — G.*®. Again the integral term
is bounded by C |[f||,- By estimate (11),

|G — itg) — GE™( — ity)
. 1+ |P®)]

Hence, given any ¢ > 0, we can choose a poly-
nomial @ and M so that if |[¢||* > M, then {1 +
[Q()]} ™" < % e. However, in the compact ||£]|° < M,
tn € «, we know that [G*?(¢ — ity) — GL*(£ — itn)|
converges to zero uniformly. Thus, there is an n,
such that for all » > n, the sup term is less than e.
Furthermore, for the case t = 0 we have

162" (9) — G<"(g)]

< 2.

<l - [ 66 — i@ ds}

+ ’f {G.""(& —itn) — G — itn)}9(®) ds[
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+ ,f G (¢ — itm)g(®) dt — GL'”)(Q)‘- (20)

For the first and third terms we have from estimate
(12) that for n fixed in T

G2 — [ 657 ~ i@ dsi

<t [ 1P.©)] 0@ d < Ctllglls < Ot llfil @)

independently of n.

Hence, given ¢ > 0, we can choose one value
of t and one \ such that (20) is majorized by e [[f|lx
for all n. Now having fixed these two terms we use
the majorization of (19) where we saw that given
e > 0, there exists n, such that n > n, (19) is
majorized by e |[f||,. Hence for a given k£ > max (v, \)
we have from these estimates and from (17) that
given ¢ > 0 then for all f & &, there is an n, such
that for n > n,

IF.() — Fa(f)
= |G (9) — G ()] < 3e [fl]s.
This just says that F, converges to F. uniformly

on bounded sets of &, which was to be proved.
It completes the proof.

(22)

Theorem 1 characterizes the connection between
limits of distributions and those of the corresponding
analytic functions in the case when the distributions
obey the spectral condition. It gives the necessary
and sufficient conditions under which the order of
these two limiting processes can be interchanged.
That is, it tells when the following diagram commutes:

Uniform bound of Form 1.
Uniform convergence

F.(t — ing)

v

F. (E - i"l)

on compacts in the tube.

Boundary value

Boundary value .

\ 4

F.(8)

Fa(®)

Convergence in &’

As usual in the case of interchange of limits, uni-
formity is essential. The uniformity of convergence
in &' is assured from simple convergence since &
is a Montel space. However, this does not imply
uniformity for the analytic functions without the
spectral condition or some other assumption. The
following example shows the importance of the
spectral condition for the above proof. Consider the

case of one variable and let T,.(p) = é(p 4+ n) +
8(p — n), and T-(») = 0. Then clearly for all
f € &, T.f) = T(f) = 0, and in fact the limit
is uniform on bounded sets of &. Furthermore,
F.(t — in) = 2 cos n(¢ — in) is an entire function
of £ — 4y for each n, and for all n,

tim [ R — inf© de = F.0).
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However, there is no uniform bound of type (1),
and for fixed 7,

lim [ B, — inf@ de = 0
is true for all f € &, only if » = 0. Thus the limiting
operations can not be interchanged.

Moreover, in the case with spectral condition,
such as 7,.(p)=8(p—n), Ta(p)=0, I'={p; p = 1},
I' = {9; 7 > 0}, the theorem only insures a uniform
bound and convergence on compacts inside B — T,
that is the lower half-plane. We see that while for
each n, F,(¢ — i7) is an entire function of ¢ — %y,
as n — o the F, diverge for 5 < 0.

In the more general case of any tempered dis-
tributions which are boundary values of holomorphic
functions (without the requirement that supp T, C
I U C where T has a nonempty interior) we can
make the following statements.

Theorem 2. Let T,.(p) be a set of distributions.
Let T, be the set of all » such that ¢ >'7T,(p) is
in &, for all n. Let I', C T, be the set of all 4 in
T, such that as » varies for 5 fixed, ¢™>'T, is a
bounded set of distributions in &!. Let Ty C I,
be the set of all 5 in T, such that for fixed 4, ¢ *'7T,
is a convergent set of distributions in & as » tends
to infinity. Then I';, T, and T; are convex. If the
origin belongs to TI';, then so does ¢I"; for 0 < t < 1.

Proof. Suppose that #,, 5. are in T';. Then for
n = an, + (1 — a)y, we have

¢ "To = a(p; N{e™"Ta + 7T,

where a(p; n) = ¢ *"{e”™" + ¢ 7"} € &,. However,
since multiplication by a function of & is a con-
tinuous linear map from & to &’, it sends bounded
sequences into bounded sequences and convergent
gequences into convergent ones. Hence y & T';. The
statement about ¢ is just convexity.

We can now state the following Limit Theorem with-
out Spectral condition.

Theorem 3. Let T,(p) be a sequence of tempered
distributions and suppose that I';, T,, and T'; are de-
fined as in Theorem 2. If T', has a nonempty in-
terior, then each Fourier transform F, = §T, is
the boundary value of a function holomorphic in
the interior of ¥, = R™ — 4I,. If the origin is
in T;, and T, has a nonempty interior, then the
holomorphic functions F,(¢ — 45) are uniformly
bounded on compacts in T, = R™' — 7T, in the
sense that for each compact x of T, there is a poly-
nomial P, and an integer r such that for all ¢ and
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all tin therange 0 < t < 1
[Fa(t — otn)| < Pu®)/F,

independently of n. Furthermore, if the origin is
in T; and I'; has a nonempty interior, then the
analytic functions F,(¢ — i) converge to F..(¢ — 73)
uniformly on all compacts in T; = B™ — ¢T;.

Conversely, let F.(§ — 75) be a sequence of func-
tions holomorphic in the tube ,. Then if each
F,(¢ — i9) is bounded for all £, all 4 in a compact «
of I, and all ¢ in the range 0 < ¢ < 1 by

|F.¢ — itn)| < Pi®)/1,

then F.(¢ — 75) has a distribution boundary value
as » — 0 in T,. If T, has a nonempty interior and
for each compact x of T', there is a uniform bound
such that for all £, all 4 € « and all ¢ in the range
0<t<1,

independently of n, then as n varies the boundary
values {F,} vary over a bounded set of &’. Further-
more, [ F.(¢ — in)f(¢) d¢ define a bounded set of
functionals in &’ as n varies and as 5 varies over
any compact in TI';. If in addition the analytic func-
tions F.(¢ — i5) converge pointwise in the interior
of T3 C I, that is for n € I's C T, then the bound-
ary values {F,} converge to F in the strong topology
of &'. Furthermore, the functionals F.(¢ — 1)
converge to Fo(¢ — 75) uniformly as n tends to
« and % varies over a compact of T,.

Remark. This theorem says that the above dia-
gram pertaining to Theorem 1 will commute if the
analytic functions are considered in §; = R™ — 7T,
and the boundary values taken as » — 0 in T,

Proof. The proof is just an extension of the proof
of Theorem 1. In that proof it could be shown that
if 0 were contained in TI';, T';, or T';, then that I
was contained in I'. However here the various TI'\’s
must be considered separately. The only modification
of the first half of the proof is that we deduced
in (4) that 8, was a strongly bounded set. Now,
this is assured if each »; & T,. Thus if 5 is a vector
in the convex hull of a set of vectors in T,

M
e, = alp; n){Z ef}

Each {¢7*"T,} will now be a bounded set by assump-
tion, and multiplication by ¢ & & maps this into
a bounded set. Furthermore, as 5 varies over a
compact in T',, and stays in the convex hull of the
7:, a(p; n) varies over a bounded set of &, and so
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{e™™"T.} is a bounded set of &' for all n and all
7 In a compact of T';. We note that by Theorem 2,
T'; contains ¢TI, for 0 < ¢ < 1, so that T, extends
as a cone to the origin, and the ¢ estimate can be
made. This same argument is used for the conver-
gence with 5 in the interior of T';.

The converse of the theorem is a straightforward
extension of the results of Theorem 1.
III. EXAMPLES OF APPLICATIONS
(1) Let ¢, be fields, @, the vacuum. Suppose that
the analytic Wightman functions corresponding to
(2, 651 -+ SEYIB(Yre1) =« - uly2r) Q)
+ (D, 621 - Y P(Yr+1)Pe(Y2r) Q)
— (R, o3 - DAY (Yrsr) DY) W)
= (0, $%(@1) -+ PEYID(Yrr1) -+ Du(y2) Q)

with the difference variables placed in the forward
tube converge to zero as required by the theorem.
Then the vectors

éu(f) -+ eu(f) Qo > (1) -+ Du(f) Do

converge in the strong topology.

(2) Let ¢ be any Wick polynomial of the free
field ¢ defined on the domain D,, the polynomial
algebra of ¢ applied to the vacuum. Then the closure
(¥]po)** has in its domain all Wick powers applied
to D,.*°

10 A. M. Jaffe, Ann. Phys. (N. Y.) 32, 127 (1965), Lemma
4. Other applications can be found in this reference.

ARTHUR JAFFE

(3) It has been shown possible to prove positive
definiteness of

exp igp(x):

on the states of definite charge where ¢(x) is a
zero-mass free scalar field in two-dimensional space—
time."

(4) The author has used this method to prove
positive definiteness for the Thirring model field on
a large (but not complete) set of states.

IV. QUESTIONS

(1) What is the relation of this convergence to
convergence of Stone projections or other bounded
functions of fields? That is, what is the induced
topology on these operators in the case when the
approximating distributions are actually a Wight-
man functional?

(2) Can any of the forms of convergence in
examples 1 and 2 of section I be related to con-
vergence of Wightman functionals?
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